83 research outputs found

    Whole-Brain Analysis of Cells and Circuits by Tissue Clearing and Light-Sheet Microscopy

    Get PDF
    In this photo essay, we present a sampling of technologies from laboratories at the forefront of whole-brain clearing and imaging for high-resolution analysis of cell populations and neuronal circuits. The data presented here were provided for the eponymous Mini-Symposium presented at the Society for Neuroscience's 2018 annual meeting

    Baroreflex control of muscle sympathetic nerve activity after 120 days of 6°head-down bed rest

    Get PDF
    of muscle sympathetic nerve activity after 120 days of 6°head-down bed rest. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 278: R445-R452, 2000.-To examine how long-lasting microgravity simulated by 6°head-down bed rest (HDBR) induces changes in the baroreflex control of muscle sympathetic nerve activity (MSNA) at rest and changes in responses of MSNA to orthostasis, six healthy male volunteers (range 26-42 yr) participated in Valsalva maneuver and head-up tilt (HUT) tests before and after 120 days of HDBR. MSNA was measured directly using a microneurographic technique. After long-term HDBR, resting supine MSNA and heart rate were augmented. The baroreflex slopes for MSNA during Valsalva maneuver (in supine position) and during 60°HUT test, determined by least-squares linear regression analysis, were significantly steeper after than before HDBR, whereas the baroreflex slopes for R-R interval were significantly flatter after HDBR. The increase in MSNA from supine to 60°HUT was not different between before and after HDBR, but mean blood pressure decreased in 60°HUT after HDBR. In conclusion, the baroreflex control of MSNA was augmented, whereas the same reflex control of R-R interval was attenuated after 120 days of HDBR. microneurography; orthostatic hypotensio

    Whole-Brain Analysis of Cells and Circuits by Tissue Clearing and Light-Sheet Microscopy

    Get PDF
    In this photo essay, we present a sampling of technologies from laboratories at the forefront of whole-brain clearing and imaging for high-resolution analysis of cell populations and neuronal circuits. The data presented here were provided for the eponymous Mini-Symposium presented at the Society for Neuroscience's 2018 annual meeting

    Purification of enzymatically inactive peptidylarginine deiminase type 6 from mouse ovary that reveals hexameric structure different from other dimeric isoforms

    Get PDF
    The murine peptidylarginine deiminase (PAD) has five isoforms encoded by different genes and partici- pates in a variety of cellular functions through the citrullination of target proteins. The crystal structure of human PAD4 with a dimeric form was previously solved because of the enzyme’s relevance to rheuma- toid arthritis. PAD6, abundant in mouse oocytes and eggs, is believed to take part in early events of embryogenesis, but its biochemical properties are little understood. Here we have purified and charac- terized a recombinant PAD6. A PAD6 cDNA was cloned from mouse ovary RNA and expressed in Escherichia coli through pET29 and pGEX vectors. When benzoyl-L-arginine ethyl ester was used as a substrate, no appreciable activity was detected with a cell homogenate under conditions where a human PAD4 cDNA caused significant activity. Both pro- teins were affinity-purified to near homogeneity. The circular dichroism spectra of PAD6 and human PAD4 were similar in the far ultraviolet region. On molecular sieving, PAD6 was eluted faster than human PAD4. The cross-linking of PAD6 with dime- thyl suberimidate clearly showed six bands on an sodium dodecyl sulfate-polyacrylamide gel. These results indicate that PAD6 can constitute a hexameric structure. The purified PAD6 still showed no enzy- matic activity. This unique structure and loss in enzymatic activity is strongly suggested to favor the formation of egg cytoplasmic sheets as the architectu- ral protein

    The history of human populations in the Japanese Archipelago inferred from genome-wide SNP data with a special reference to the Ainu and the Ryukyuan populations

    Get PDF
    The Japanese Archipelago stretches over 4000 km from north to south, and is the homeland of the three human populations; the Ainu, the Mainland Japanese and the Ryukyuan. The archeological evidence of human residence on this Archipelago goes back to 430 000 years, and various migration routes and root populations have been proposed. Here, we determined close to one million single-nucleotide polymorphisms (SNPs) for the Ainu and the Ryukyuan, and compared these with existing data sets. This is the first report of these genome-wide SNP data. Major findings are: (1) Recent admixture with the Mainland Japanese was observed for more than one third of the Ainu individuals from principal component analysis and frappe analyses; (2) The Ainu population seems to have experienced admixture with another population, and a combination of two types of admixtures is the unique characteristics of this population; (3) The Ainu and the Ryukyuan are tightly clustered with 100% bootstrap probability followed by the Mainland Japanese in the phylogenetic trees of East Eurasian populations. These results clearly support the dual structure model on the Japanese Archipelago populations, though the origins of the Jomon and the Yayoi people still remain to be solved

    Genome-wide SNP analysis reveals population structure and demographic history of the ryukyu islanders in the southern part of the Japanese archipelago.

    Get PDF
    The Ryukyu Islands are located to the southwest of the Japanese archipelago. Archaeological evidence has revealed the existence of prehistoric cultural differentiation between the northern Ryukyu islands of Amami and Okinawa, and the southern Ryukyu islands of Miyako and Yaeyama. To examine a genetic subdivision in the Ryukyu Islands, we conducted genome-wide single nucleotide polymorphism typing of inhabitants from the Okinawa Islands, the Miyako Islands, and the Yaeyama Islands. Principal component and cluster analyses revealed genetic differentiation among the island groups, especially between Okinawa and Miyako. No genetic affinity was observed between aboriginal Taiwanese and any of the Ryukyu populations. The genetic differentiation observed between the inhabitants of the Okinawa Islands and the Miyako Islands is likely to have arisen due to genetic drift rather than admixture with people from neighboring regions. Based on the observed genetic differences, the divergence time between the inhabitants of Okinawa and Miyako islands was dated to the Holocene. These findings suggest that the Pleistocene inhabitants, whose bones have been found on the southern Ryukyu Islands, did not make a major genetic contribution, if any, to the present-day inhabitants of the southern Ryukyu Islands

    Evaluation of Anti-Adhesion Characteristics of Diamond-Like Carbon Film by Combining Friction and Wear Test with Step Loading and Weibull Analysis

    No full text
    Anti-adhesion characteristics are important requirements for diamond-like carbon (DLC) films. The failure load corresponding to the anti-adhesion capacity varies greatly on three types of DLC film (hydrogen-free amorphous carbon film (a-C), hydrogenated amorphous carbon film (a-C:H), and tetrahedral hydrogen-free amorphous carbon film (ta-C)) in the friction and wear test with step loading using a high-frequency, linear-oscillation tribometer. Therefore, a new method that estimates a representative value of the failure load was developed in this study by performing a statistical analysis based on the Weibull distribution based on the assumption that the mechanism of delamination of a DLC film obeys the weakest link model. The failure load at the cumulative failure probabilities of 10% and 50% increased in the order ta-C < a-C:H < a-C and ta-C < a-C < a-C:H, respectively. The variation of the failure load, represented by the Weibull slope, was minimum on ta-C and maximum on a-C:H. The rank of the anti-adhesion capacity of each DLC film with respect to the load obtained by a constant load test agreed with the rank of the failure load on each DLC film at the cumulative failure probability of 10% obtained by Weibull analysis. It was found to be possible to evaluate the anti-adhesion capacity of a DLC film under more practical conditions by combining the step loading test and Weibull analysis

    Influence of Tribochemical Reaction on Friction and Wear Behavior of Metallic Materials in <i>n</i>-Hexane and in Ethanol

    No full text
    Cast iron, aluminum metal and sintered aluminum-silicon (Al-Si) were slid against SUS440C stainless steel in n-hexane and in ethanol. In the case of the cast iron/stainless steel and aluminum metal/stainless steel pairs, friction and wear were lower in n-hexane than in ethanol. In contrast, the friction and wear for the sintered Al-Si/stainless steel pair were much higher in n-hexane than in ethanol. The results from morphological observations and chemical analyses of the worn surfaces suggested that the wear mechanism was influenced by the physical properties of the sliding materials and the tribochemical reactions between the sliding materials and lubricants
    corecore