1,374 research outputs found

    Service Performance Indicators for Infrastructure Investment

    Get PDF
    Infrastructure systems serving modern economies are highly complex, highly interconnected, and often highly interactive. The result is increased complexity in investment decision-making, and increased challenges in prioritising that investment. However, this prioritisation is vital to developing a long-term, sound, robust and achievable pipeline of national infrastructure. One key to effective, objective and prudent investment prioritisation is understanding the real performance of infrastructure. Many metrics are employed to this end, and many are imposed by governments or regulators, but often these metrics relate only to inputs or outputs in a production process. Whilst these metrics may be useful for delivery agencies, they largely fail to address the real expectations or requirements of infrastructure users — quality of service, safety, reliability, and resilience. What is required is a set of metrics which address not outputs but outcomes — that is, how well does the infrastructure network meet service needs? This paper reports on a study undertaken at a national level, to identify service needs across a range of infrastructure sectors, to assess service performance metrics in use, and to show how they or other suitable metrics can be used to prioritise investment decisions across sectors and jurisdictions

    Aluminum Borate Nanowires from the Pyrolysis of Polyaminoborane Precursors

    Get PDF
    Polyaminoboranes [N(R)H-BH2]n (1: R = H, 2: R = Me) were pyrolyzed on a range of substrates: silicon, metal foils (stainless steel, nickel, and rhodium), and sapphire wafers, as well as on Al2O3 and AlN powders.</p

    Dynamics of sediment flux to a bathyal continental margin section through the Paleocene–Eocene Thermal Maximum

    Get PDF
    The response of the Earth system to greenhouse-gas-driven warming is of critical importance for the future trajectory of our planetary environment. Hyperthermal events – past climate transients with global-scale warming significantly above background climate variability – can provide insights into the nature and magnitude of these responses. The largest hyperthermal of the Cenozoic was the Paleocene–Eocene Thermal Maximum (PETM ∼ 56 Ma). Here we present new high-resolution bulk sediment stable isotope and major element data for the classic PETM section at Zumaia, Spain. With these data we provide a new detailed stratigraphic correlation to other key deep-ocean and terrestrial PETM reference sections. With this new correlation and age model we are able to demonstrate that detrital sediment accumulation rates within the Zumaia continental margin section increased more than 4-fold during the PETM, representing a radical change in regional hydrology that drove dramatic increases in terrestrial-to-marine sediment flux. Most remarkable is that detrital accumulation rates remain high throughout the body of the PETM, and even reach peak values during the recovery phase of the characteristic PETM carbon isotope excursion (CIE). Using a series of Earth system model inversions, driven by the new Zumaia carbon isotope record, we demonstrate that the silicate weathering feedback alone is insufficient to recover the PETM CIE, and that active organic carbon burial is required to match the observed dynamics of the CIE. Further, we demonstrate that the period of maximum organic carbon sequestration coincides with the peak in detrital accumulation rates observed at Zumaia. Based on these results, we hypothesise that orbital-scale variations in subtropical hydro-climates, and their subsequent impact on sediment dynamics, may contribute to the rapid climate and CIE recovery from peak-PETM conditions

    Creating a lean, reliable, and scalable platform for highfrequency data on diet quality in Rwanda

    Get PDF

    Are agricultural researchers working on the right crops to enable food and nutrition security under future climates?

    Get PDF
    This study examined how crop-specific agricultural research investments can be prioritised to anticipate climate change impact on crops and to enable the production of more nutritious food. We used a simple crop modelling approach to derive expected future changes in regional climate suitability for crops. To determine if different starch-rich and pulse crops are currently underresearched or overresearched, we examined the global relation between crop-specific research output (number of publications) and the total nutrient output available for human consumption. Our analysis shows that current research investments are mostly associated with the current energy output of crops. Other things equal, investment levels tend to be slightly lower for crops better adapted to future climates and tend to decrease as crop nutrient richness increases. Among starch-rich crops, maize, barley, and rice receive substantially more research investment than justified by their current nutrient output. Sweetpotato, potato, and wheat show substantial current research deficits. Sweetpotato is most strongly underresearched in regions with improving climate suitability. For potato, research deficits occur in regions where these crops will experience less suitable climate conditions. For wheat, the deficits are distributed equally across regions with negative and positive climate effects. Three crops are significantly over-researched, namely maize, rice, and barley. Among pulses, cowpea, and lupin are generally overresearched. Common bean is highly underresearched, but these deficits concentrate in areas where it will likely suffer from climate change. Lentil, broad bean, and chickpea are underresearched, with deficits concentrating in regions where these crops will tend to benefit from future climates. Agricultural research investment allocations will need to consider additional factors not taken into account in this study, but our findings suggest that current allocations need reconsideration to support climate adaptation and enhance healthy human nutrition

    The ELAIS deep X-ray survey - I. Chandra source catalogue and first results

    Get PDF
    We present an analysis of two deep (75 ks) Chandra observations of the European Large Area Infrared Space Observatory (ISO) Survey (ELAIS) fields N1 and N2 as the first results from the ELAIS deep X-ray survey. This survey is being conducted in well-studied regions with extensive multiwavelength coverage. Here we present the Chandra source catalogues along with an analysis of source counts, hardness ratios and optical classifications. A total of 233 X-ray point sources are detected in addition to two soft extended sources, which are found to be associated with galaxy clusters. An overdensity of sources is found in N1 with 30 per cent more sources than N2, which we attribute to large-scale structure. A similar variance is seen between other deep Chandra surveys. The source count statistics reveal an increasing fraction of hard sources at fainter fluxes. The number of galaxy-like counterparts also increases dramatically towards fainter fluxes, consistent with the emergence of a large population of obscured sources

    The role of pH on the thermodynamics and kinetics of muscle biochemistry: An in vivo study by 31P-MRS in patients with myo-phosphorylase deficiency

    Get PDF
    AbstractIn this study we assessed ΔG′ATP hydrolysis, cytosolic [ADP], and the rate of phosphocreatine recovery using Phosphorus Magnetic Resonance Spectroscopy in the calf muscle of a group of patients affected by glycogen myo-phosphorylase deficiency (McArdle disease). The goal was to ascertain whether and to what extent the deficit of the glycogenolytic pathway would affect the muscle energy balance. A typical feature of this pathology is the lack of intracellular acidosis. Therefore we posed the question of whether, in the absence of pH decrease, the rate of phosphocreatine recovery depends on the amount of phosphocreatine consumed during exercise. Results showed that at the end of exercise both [ADP] and ΔG′ATP of patients were significantly higher than those of matched control groups reaching comparable levels of phosphocreatine concentration. Furthermore, in these patients we found that the rate of phosphocreatine recovery is not influenced by the amount of phosphocreatine consumed during exercise. These outcomes provide experimental evidence that: i) the intracellular acidification occurring in exercising skeletal muscle is a protective factor for the energy consumption; and ii) the influence of pH on the phosphocreatine recovery rate is at least in part related to the kinetic mechanisms of mitochondrial creatine kinase enzyme

    The ELAIS Deep X-ray Survey

    Full text link
    We present initial follow-up results of the ELAIS Deep X-ray Survey which is being undertaken with the Chandra and XMM-Newton Observatories. 235 X-ray sources are detected in our two 75 ks ACIS-I observations in the well-studied ELAIS N1 and N2 areas. 90% of the X-ray sources are identified optically to R=26 with a median magnitude of R=24. We show that objects which are unresolved optically (i.e. quasars) follow a correlation between their optical and X-ray fluxes, whereas galaxies do not. We also find that the quasars with fainter optical counterparts have harder X-ray spectra, consistent with absorption at both wavebands. Initial spectroscopic follow-up has revealed a large fraction of high-luminosity Type 2 quasars. The prospects for studying the evolution of the host galaxies of X-ray selected Type 2 AGN are considered.Comment: 9 pages, 5 figures, To appear in Proceedings of XXI Moriond Conference: "Galaxy Clusters and the High Redshift Universe Observed in X-rays", edited by D. Neumann, F.Durret, & J. Tran Thanh Va
    • …
    corecore