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A B S T R A C T

This study examined how crop-specific agricultural research investments can be prioritised to anticipate climate
change impact on crops and to enable the production of more nutritious food. We used a simple crop modelling
approach to derive expected future changes in regional climate suitability for crops. To determine if different
starch-rich and pulse crops are currently underresearched or overresearched, we examined the global relation
between crop-specific research output (number of publications) and the total nutrient output available for
human consumption. Our analysis shows that current research investments are mostly associated with the
current energy output of crops. Other things equal, investment levels tend to be slightly lower for crops better
adapted to future climates and tend to decrease as crop nutrient richness increases. Among starch-rich crops,
maize, barley, and rice receive substantially more research investment than justified by their current nutrient
output. Sweetpotato, potato, and wheat show substantial current research deficits. Sweetpotato is most strongly
underresearched in regions with improving climate suitability. For potato, research deficits occur in regions
where these crops will experience less suitable climate conditions. For wheat, the deficits are distributed equally
across regions with negative and positive climate effects. Three crops are significantly over-researched, namely
maize, rice, and barley. Among pulses, cowpea, and lupin are generally overresearched. Common bean is highly
underresearched, but these deficits concentrate in areas where it will likely suffer from climate change. Lentil,
broad bean, and chickpea are underresearched, with deficits concentrating in regions where these crops will tend
to benefit from future climates. Agricultural research investment allocations will need to consider additional
factors not taken into account in this study, but our findings suggest that current allocations need re-
consideration to support climate adaptation and enhance healthy human nutrition.

1. Introduction

There is broad agreement that climate change represents a major
challenge to the global food system. The IPCC (2014) suggests that from
1960 to 2013 climate change had more negative than positive impacts
on food production systems. Geographically, climate impacts on agri-
cultural production are highly disparate (IPCC, 2014; Leclère et al.,
2014; Yang et al., 2015; Dono et al., 2016). At the same time, agri-
culture is under pressure from the growing demand for agricultural
products due to global population growth (Ziervogel and Ericksen,
2010; Godfray et al., 2010). Even under current conditions, agricultural
systems fail to address malnutrition of more than 2 billion people who
suffer from micro-nutrient deficiencies (International Panel of Experts
on Sustainable Food Systems (IPES-Food, 2016). This is partly due to

the insufficient production levels of nutrient-rich crops required for
healthy human nutrition (Siegel et al., 2014).

While there is agreement that climate change and malnutrition
present a double challenge to the global food system, there is less
agreement about how crop-related R&D efforts should respond.
Predictive studies have attempted to achieve insights into future
change. For example, a large number of studies have tried to determine
the expected yield change in major food crops and specific agronomic
measures to counteract these impacts (Lobell et al., 2011; IPCC, 2014;
Lobell, 2014). These studies are likely to have limited practical value to
set R&D priorities as they try to hit a moving target. In many cases,
other changes will override modelled changes. As climate change pro-
gresses, farmers will tend to move away from crops with increasingly
low yields and substitute them with other crops better adapted to the
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new conditions (Seo and Mendelsohn, 2008; Burke et al., 2009). Cli-
mate change will also affect crop production indirectly by stimulating
migration and off-farm activities, which will in turn affect the avail-
ability of labour and capital for crop production and eventually farmers’
crop choice. On top of this, there are other policy demands, especially
on the quality of food, that call for an increased focus on more nu-
tritious crops, beyond the absolute yield of the major energy-providing
crops (Pingali, 2015). An increasing global population and changes to
consumer demands will also have to be accounted for by future agri-
cultural systems (e.g. Vranken et al., 2014).

Given these wide-ranging changes, agricultural research should
prioritize investments from a wide, systemic perspective. Crop-specific
R&D is a long-term investment and should focus on the production
systems and crops that are deemed to be most relevant in the long term.
One of the first steps in priority setting for crop R&D should therefore
focus on strategic investment allocations across food crops. There are a
number of choices to make in order to set priorities. Should a currently
important crop that is losing terrain to climate change be propped up?
Or should R&D instead focus on preparing the terrain for alternative
crops that are expected to win under climate change and have high
potential for human nutrition? These choices are strategic and will in-
volve complex coordination with other types of policies and business
strategies.

This study provides a first input to set priorities for crop-specific
agricultural R&D investments. Decision-making on agricultural R&D
investment is not subject to a straightforward optimisation and it does
not address a well-characterised problem. It is probably best char-
acterised as a “pathway” in search of negotiated, interconnected solu-
tions (Wise et al., 2014). There is path-dependency and reflexivity in
this type of decision-making, as R&D investments will affect crop
adaptation and crop adaptation will in turn affect the opportunities for
R&D investments. Decision-making processes will involve negotiations,
value-based decisions and the creation of a shared vision, which are
difficult to predict. Even so, decision-makers need to take into account
those aspects of the problem that are not easy to change and that
provide relatively hard boundaries that delimit the solution space. Also,
decision-makers need to consider the widest possible range of options,
before closing in on a subset of solutions. Therefore, we do not suggest
an optimal allocation of R&D investment across crops, but rather pro-
vide easily interpretable information that should be combined with
other considerations in a broad-ranging discussion among stakeholders
to set priorities.

As a first element, we provide a relatively simple, transparent in-
dicator of the direction of change expected from climate change that
can be calculated for all crops, including “data-sparse” ones (which are
often ignored in climate impact studies). We also explored the

uncertainty in the information provided. First, we determined for any
given region of the world which crops will increase and decrease the
geographical extent of their potential niche. In reality, their expansion
or contraction will depend on many other factors, including crop-spe-
cific agricultural R&D investment itself. Even so, growing niche-con-
tracting crops will likely incur increasing costs to offset the effects of
climate change. Costs may include the cost of breeding for stress tol-
erance, increased need for irrigation, increased crop losses, increased
costs of crop insurance, or reduced resource use efficiency due to lower
average yields. Our simple indicator can be considered as an indication
of the effort needed to keep a particular crop in place.

The other element to be considered in decision-making is objective
information on the relative importance of each crop for food and nu-
trition security. The rationale is that the relative importance of crops is
a key factor to allocate R&D funds, following the concept of “con-
gruence” (Gryseels et al., 1992). We compared the crop-specific agri-
cultural research output per crop for each region with their relative
importance to determine if crops are currently underresearched or
overresearched. In this analysis, our measure of relative crop im-
portance was current nutrient output. This follows the argument made
by Pingali (2015) that crop research investments should shift from the
Green Revolution focus on energy output to a focus on human nutrition
(also, see International Panel of Experts on Sustainable Food Systems
(IPES-Food, 2016). Pingali (2015) suggests that this implies a shift from
staple crops to fruits and vegetables. However, also within starch crops
and pulses this would imply a shift in research priorities. Predicting
future consumption is exceedingly complicated, especially for minor
crops. Another issue is that shifts in consumption will depend on R&D
investments, leading to circular causality. To steer free from these is-
sues, we focused on current nutrient output values, which serve to
benchmark research intensity levels, against which future investments
can be assessed. We synthesised the results in ways that facilitate in-
terpretation for priority setting, considering simultaneously both cli-
mate adaptation and human nutrition.

2. Material and methods

2.1. Regions and crops

We report our results by broad geographic regions. We used the
regions as defined by Brummit (2001), dividing the globe into 50 plant
distributional regions (Fig. 1). We selected this scheme, because (1) it is
an international standard for plant geographical distributions, (2) it
follows political boundaries (countries and large subnational areas),
which facilitates linking the areas with census and bibliometric data,
(3) the number of regions can be represented in global overview tables

Fig. 1. Map of the plant distribution regions used in the study, adapted from Brummit (2001).
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and small maps. We excluded the Antarctic for this study, as no crops
are grown there. Due to their small agricultural land area, we also ex-
cluded Macaronesia, Middle Atlantic Ocean, North-Central Pacific,
Northwestern Pacific, Southwestern Pacific, Subantarctic Islands and
Subarctic America.

We focus on two main categories of food crops: grains, tubers and
roots, bananas and plantains (“starch crops”), and “pulses”. We ex-
cluded other categories as census data for fruits and vegetables are
difficult to compare across continents and sugar and oil crops have
fewer crops in each group.

2.2. Crop suitability modelling

Crop suitability was modelled using climate data for current and
future conditions in order to determine for each crop in each region if
suitability will increase or decrease. The current data (1970–2000)
were taken from WorldClim (Fick and Hijmans, 2017). We used
monthly data for precipitation, minimum temperature, and mean
temperature as inputs into the crop model. Data of a 5 arc minute re-
solution were aggregated to a resolution of 20 arc minutes.

Projected future climate data were taken from the CCAFS database
(Ramirez and Jarvis, 2008). These data were previously downscaled, as
described by Ramirez and Jarvis (2010). We used all 30 available
General Circulation Model (GCM) projections for the IPCC RCP 4.5
scenario, with a model run for each projection. These projections esti-
mated climatic conditions for the year 2050. Again, we used monthly
data for precipitation, mean temperature, and minimum temperature.
Data with a resolution of 5 arc minutes were aggregated to 20 arc
minutes.

To assess the regional suitability of each crop, the EcoCrop function
of the R package dismo was used (Hijmans et al., 2001; Hijmans and
Elith, 2012). EcoCrop is a simple model that evaluates the suitability of
a given environment for a crop by comparing monthly temperature and
precipitation data with crop-specific admissible ranges. The EcoCrop
model is named after the homonymous database, maintained by the
FAO (FAO, 2012). We used the data from this database to provide data
to our model. We did not use the data provided within dismo (Hijmans
and Elith, 2012), which stems from a previous version of the FAO
EcoCrop database.

EcoCrop gives a first approximation of climate change impacts
across crops where more detailed crop modelling results are difficult to
obtain. Ramirez-Villegas et al. (2013) found for sorghum that the
EcoCrop model predicts suitability well. Jarvis et al. (2012) determined
the change in growing suitability due to climate change for seven staple
crops across Africa with EcoCrop. Applications of EcoCrop have shown
that the results are consistent with other modelling techniques
(Ramirez-Villegas et al., 2013; Vermeulen et al., 2013). EcoCrop only
considers average abiotic environmental conditions and ignores the
presence of pests, disease pressure, soil conditions, and climatic varia-
bility. Ramirez-Villegas et al. (2013) discuss the limitations of the
model in further detail. In this study, we use EcoCrop to produce a very
general indicator of climate change impact: the sign of change in suit-
ability for given crops in very broadly defined regions (following Bellon
and Van Etten, 2014). We have further decreased the probability of
misidentification by providing slightly conservative estimates of crops
that would expand or contract their suitable range under climate
change (see section 2.5 below).

We offer a very brief overview of the EcoCrop model as im-
plemented in dismo (Hijmans and Elith, 2012). A more detailed de-
scription of the computations behind EcoCrop are given in Appendix A
‘EcoCrop Model Computation’. In calculating crop suitability, EcoCrop
simulates 12 crop cycles starting in each month of the year. For each
cycle, it determines the suitability for crop growth by evaluating to
what extent the seasonal climate falls within crop-specific thresholds of
maximum and minimum temperature and rainfall (if the crop is not
irrigated). It then takes the maximum suitability value of the 12 crop

cycles. The model gives a final suitability indicator value between 0
(unsuitable) and 1 (suitable). If the value is between 0 and 1, the crop
cycle includes a period with a permissible yet suboptimal temperature
or it receives too much or too little rain in the optimal growth period.

Crop suitability was calculated with the data for present and future
climates. We applied EcoCrop to each grid cell with cropland
(Ramankutty et al., 2008). For each grid cell, the resulting crop suit-
ability indices were multiplied by the total area of recorded cropland in
hectares. The results were then summed by region for each crop and
each data source (WorldClim and each of the GCMs). The use of the
2000 cropland data (Ramankutty et al., 2008) for the future area cal-
culation does not take into account the potential future emergence of
new cropland areas due to climate change or other factors. Porfirio
et al. (2017) analysed the potential impact of climate change on the
global geographical distribution of cropland in 2100. They projected
changes of up to 10% in areas not currently associated with agriculture,
including arid and boreal regions. Smith et al. (2010) suggest that
global croplands could expand between 6–30% by 2050 due to other
(non-climatic) drivers. The potential expansion of individual crops is
therefore conservative for higher latitudes to the degree that more land
is taken into agricultural use at the expense of other types of land use,
especially boreal forests. Even though this effect will affect the mag-
nitude of change, it will not invert the sign of change (positive or ne-
gative) of crop suitability change. Crops that are now at their climate
limits at high latitudes will become more fully suitable in these areas, so
they will show a positive change. Since we focus on the sign (and not
the magnitude) of change, this is not a major source of uncertainty for
our study. Contraction of agricultural land due to climate change, on
the other hand, is even less problematic, as this would correspond to a
decreasing suitability of the crops currently grown there, as modelled
by EcoCrop. Hence, in tropical and subtropical regions, where some
contraction may occur, our approach does not yield substantial dis-
tortions.

After obtaining the average weighted suitability shifts, we sum-
marised the results by comparing WorldClim outcomes with those of
the different GCMs. If 16 out of the 30 GCMs, representing 50% +1,
agreed that the suitable area for a given region will increase for a given
crop, the crop-region combination is placed in the “positive climate
impact” category, if 50%+1 GCMs agree on a decrease the crop-region
combination is in the “negative climate impact” category. The re-
maining crop-region combinations are categorised as “neutral climate
impact”.

2.3. Sensitivity analysis of EcoCrop results

The accuracy of crop models, like EcoCrop, relies on the quality and
validity of their parametrisation (Makowski et al., 2006). The EcoCrop
parameter values used in this analysis behave well in other studies (see
Section 2.2 above). Even so, it is prudent to analyse the sensitivity of
crop suitability outputs to the parameters of EcoCrop to assess the ro-
bustness of the analysis. To perform the sensitivity analysis, parameter
changes were made to the temperature, precipitation, and crop cycle
length data derived from FAO (2012).

We chose variations creating ranges within which the correct
parameter value is likely to lie. We varied the maximum and minimum
temperature parameters by +/- 2°C; changed the permissible range of
precipitation by +/- 25%; and changed the crop cycle length by +/- 30
days. In total, 14 sensitivity tests were performed, with temperature
and precipitation sensitivity tests combined with crop cycle length
changes to explore possible interactions, with changes to crop cycle
length also analysed independently (Table 1).

To gauge the sensitivity of suitability to these changes, we analysed
the difference between the regional suitability outputs for each crop
under the baseline parameters from FAO (2012), with the outputs from
the sensitivity test parameters. The changes were categorised as whe-
ther suitability increased, decreased or remained the same.
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2.4. Nutrient output values

Regional total crop production values were taken for each crop
(FAO, 2017) to obtain an index of output per region. These values were
then weighted by the proportion of crop quantities available as human
food, derived from the FAO´s Food Balance Sheets (FAO, 2018a). To
develop these values, the amount of each crop available as food was
divided by domestic supply for that region. In cases where individual
crop food data were not available (e.g. quinoa and lentils), aggregated
data (e.g. “cereals, other” and “pulses”) were used. We focused on
current domestic supply available as food.

These weighted crop harvest output data were then used to estimate
regional nutrient output indices for each crop. Nutrient output was
calculated as the total nutrient rich foods index (NRF9.3) (Fulgoni
et al., 2009) using data for macronutrient, vitamin, and mineral con-
tents of each crop (USDA, 2016), relative to daily reference values
(FDA, 2013). Individual crop NRF 9.3 scores were calculated per 50 g of
crop. The use of the NRF9.3 index permits a weighting of the crops
based upon their nutrient density. NRF9.3 does not include carbohy-
drates as a nutrient, which may be unfavourable to certain crops. We
also tested a version of this index with carbohydrate content, but this
did not produce significantly different results. From the nutritional
output values of crops, we note the influence of the considerable dif-
ferences in nutrient density between crops, for example the high nu-
trient density of sweetpotato, which would have been ignored if we had
only classified crops based upon carbohydrate or protein contents.

2.5. Crop-specific agricultural R&D investment benchmarking

We benchmarked crop-specific agricultural R&D investment based
on the number of publications and the nutritional output of each crop in
each region. Overall, there is a positive correlation between regional
nutritional output and the number of publications by region. We made
negative and positive deviations from this trend count as evidence for a
crop being underresearched or overresearched.

We used Scirus, a (now defunct) free search engine for scientific
research literature, to estimate the number of published agricultural
research articles on each crop (Elsevier, 2012). We ran searches using
the common name of each crop and the name of the countries (or
subnational units) in each region in either the title of the publication or
the author affiliations. In some cases, more than one common name was
used (“maize” and “corn”, for example). We limited the scope to the
agricultural and environmental sciences to avoid possible confusion
(the crop “apple” with the brand “Apple”, for example) or publications
of less relevance for our goal (in the humanities, for example). We re-
corded the number of articles estimated by Scirus for the period
2002–2013 to correspond to each crop-region combination. Articles
were counted more than once if they correspond to more than one re-
gion or crop.

We benchmarked the number of publications on a given crop
against the expected number of publications based on the relative share
of nutrient output from that crop. We benchmarked regionally and
globally. Regional benchmarking is relevant for R&D investments that

do not easily spill over from one region to another. Also, it helps to
guard against unknown regional biases in publication database. Global
benchmarking is relevant if a low R&D investment in one region can be
compensated by investments in another region.

To set benchmarks, we used a zero-inflated Poisson generalised
linear model with publications as the response variable and ln(total
nutritional values +1) and region (a categorical variable which
modifies the intercept) as the explanatory variables, while we predicted
zero-inflation using the energy score (see below). We took the regres-
sion line as the benchmark. To set global benchmarks, we did the same
but without the region variable in the linear regression. We calculated
for each crop-region combination the difference between the actual
number of publications and the regional and global benchmarks. We
aggregated the research intensity across regions. To be conservative,
only if the research intensity was 1 or more publications below the
benchmark, the crop was considered underresearched for that parti-
cular region and retained. We then summed the research intensity for
each of the underresearched regions. The “regional research deficit” is
the sum of regional research deficits using the regional benchmarks.
The “global research deficit” is the sum of global research deficits using
the global benchmarks.

2.6. Other determinants of crop-specific agricultural research intensity

Our analysis takes nutrient output as its measure of crop im-
portance, as this is the main societal value of crop production (Pingali,
2015, see Introduction). However, current investments may follow
other principles, to do with previous policy emphasis on energy pro-
vision or the monetary value of crops. Therefore, we explored to what
extent these factors influence current research intensity and our ap-
proach represents a shift in priorities. We calculated energy output per
crop, using crop-specific energy data (USDA, 2016). Also, we calculated
the monetary value of crops using producer prices (FAO, 2018b). We
also tested if there was a bias in crop-specific agricultural R&D in-
vestment against or in favour of crops that increase in suitability under
climate change, using the modelling results of the method described in
Section 2.2 above. We entered these values as explanatory variables in a
zero-inflated Poisson generalised linear model. We used the Akaike
Information Criterion to select the best model. The zero-inflation part of
the model turned out to be predicted only by the energy output.

2.7. Computations

We performed all analyses in R (R Core Team, 2016), using
packages from Table 2.

2.8. Main limitations of this study

To interpret the results of our study, it is important to take into
account its main limitations. These limitations are generally due to the

Table 1
Sensitivity scenarios representing crop parameter changes.

Change in temperature or
precipitation

Crop Cycle +1 Month Crop Cycle -1 Month

Minimum temperature +2°C Tmin+2C+1m Tmin+2C−1 m
Minimum temperature –2°C Tmin-2C+ 1m Tmin-2C−1 m
Maximum temperature +2°C Tmax+2C+1m Tmax+2C−1 m
Maximum temperature –2°C Tmax-2C+1m Tmax-2C−1m
Precipitation +25% Pre+25%+1m Pre+25%−1 m
Precipitation –25% Pre-25%+1m Pre-25%−1 m
No change +1m −1 m

Table 2
R packages used as part of analysis.

Package Package Function Authors

dismo Crop suitability modelling (Hijmans et al., 2017)
ggplot2 Plotting (Wickham and Chang,

2016)
grDevices Plotting and colour manipulation (R Core Team, 2016)
grid Plotting and layout manipulation (Murrel, 2016)
maptools Reading and handling spatial data (Bivand et al., 2017)
pscl Statistical analysis (Jackman et al., 2017)
raster Geographic data analysis and

manipulation
(Hijmans et al., 2016)

reshape2 Data manipulation (Wickham, 2016)
rgdal Geographic data analysis and

manipulation
(Bivand et al., 2016)
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sparsity of data available for many of the crops studied and the rela-
tively simple modelling methods we have used. Improved data sets and
more refined analyses will hopefully become available to address these
limitations.

This study does not perform a detailed calibration of the EcoCrop
model for each crop. The EcoCrop model could be calibrated to provide
a better geo-spatial characterisation of the impacts of climate change on
these species (Ramirez-Villegas et al., 2013). The sensitivity analysis
undertaken, however, makes it possible to analyse whether or not the
results would drastically change if the parameters of the EcoCrop model
were to be refined.

Another important limitation is that the study does not quantify the
degree of change in climate suitability of crops, but only categorises
crops per region according to the sign of change. This limitation is a
result of the lack of reliable, comprehensive data on actual crop dis-
tributions on all crops included in this study.

The current study focused only on crops for which global census
data is available. However, there is a range of crops that are not in-
cluded in national statistics in spite of their local importance for human
nutrition and that are neglected by agricultural research. We suspect
that even though each individual species makes a small contribution at
national scale, as a group these species potentially make a substantial
contribution in certain locations. The inclusion of these so-called ne-
glected and under-utilised species (NUS) would also aid in providing a
clearer picture of future adaptation potential. The potential of these
crops is evident in that crops that were only of local importance a few
decades ago, such as quinoa, are now getting much more attention and
are grown widely (Bazile et al., 2016). However, no global production
data is currently available for NUS crops, making it difficult to establish
if they are underresearched or not with the method employed here.

Also, the prioritisation on the basis of current research deficits is

only done for crops that are present in each region. We do not take into
account the possibility of introducing crops into regions in which they
are not currently grown. The successful introduction of crops to regions
will depend on a number of factors including acceptance by farmers and
consumers and initiatives supporting value chain development.
Historically, crop introductions have a mixed record of success, but they
have been undeniably very important in shaping production systems
(Wood et al., 2011). Crop introduction possibilities are therefore im-
portant to evaluate in the context of climate change, but are not further
considered here.

Another limitation is that the use of scientific publications as a
proxy of investment rather than directly using investment values for
each crop does not take into account that research may have significant
differences in efficiency between crops, in terms of the capacity of
converting research investments into publications. This could be re-
solved with the disaggregation of R&D investments by crop. The
International Food Policy Research Institute (IFPRI) provides annual
reports on agricultural research spending, but without crop dis-
aggregation (International Food Policy Research Institute (IFPRI,
2016). More disaggregated datasets are needed to provide a more ac-
curate picture of research investments per crop.

Further, only the current nutrient output of food crops is considered.
This did not take into account that crop production also contributes to
human nutrition through the provision of feed to animal production.
The importance of feed crop production is likely to change in the future
as regional and global diets transition (Vranken et al., 2014). Also, we
did not take into account the fact that the nutritional value of crop
products may change as a result of climate change (Myers et al., 2014)
or efforts to increase the nutrient density of crops through breeding
(biofortification) (Bouis and Saltzman, 2017). In spite of the importance
of the expected changes in the nutrient density of crops, our analysis

Fig. 2. Crop suitability changes across regions where they are currently present. Crops with suitability increasing across 16 of the 30 GCMs were categorised as
increasing, those where no change was seen across the models were categorised as climate neutral and those where suitable area reduced were categorised as
decreasing.
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assumes that the overall crop portfolios will generally have larger ef-
fects in shifting nutrient output. We did some preliminary tests chan-
ging a single nutrient value for a crop by a percentage that can be ex-
pected from the effect of biofortification. These tests showed that our
results are robust to such changes. Nutrient values for each crop are
calculated across 9 different nutrients and these values are stable even
if one of these values changes by a large percentage. This does not
mean, however, that nutrient density of single nutrient is not important.
Nutrient output is considered as a one-dimensional variable in our
analysis, which does not focus on the complementarity between crops
in providing different nutrients or the relative deficit that each crop fills
for the actual most critical type of nutrient in human diets. This last
limitation would be best addressed through follow-up studies focusing
on scenarios of future crop portfolios and diet composition.

3. Results

3.1. Suitability under climate change

In Fig. 2 we present for each crop the modelled impacts of climate
change in regions where they are currently present. The results high-
light the heterogeneous impacts of climate change across regions and
crops. For the majority of crops present in the tropics climate change
represents a considerable challenge. Crops present in more northerly
and southerly regions are less negatively impacted and often show
suitability increases. The outputs also demonstrate how climate change
could affect current food staples like maize, rice, and wheat in regions
where they are currently important for food security.

3.2. Sensitivity analysis

The sensitivity analysis outputs are reported in Table 3. It shows
how many crop-region combinations give a different result if the Eco-
Crop model is parameterised in a different way (one crop-region

combination is for example: “Maize - Middle Europe”). EcoCrop outputs
were found to be least sensitive to+ 1m for both starch crops and
pulses. Under all tests and for both crop groups, changes in the direction
(increase, decrease or no change) of suitability in each crop-region
combination were found to be highest for the Pre+25%−1m test. In
this case, 16% of starch crop-region combinations and 18% of pulse
combinations changed in some direction compared to the baseline. A
complete shift in sign of change, from positive to negative or the other
way around, was observed in only 1–12% of the crop-region combi-
nations under each scenario.

Even though crop cycle length was determined with a very simple
method that does not fully reflect the full range of possibilities, the
sensitivity analysis results indicated that the precise crop cycle length
parameterisation does not heavily influence the final results. This
supports previous findings, which also showed that EcoCrop outputs
have limited sensitivity to the parameterisation of crop cycle length
(Ramirez-Villegas et al., 2013). Despite this, the interaction between
this parameter and others, especially precipitation, did induce greater
changes to EcoCrop outputs. However, that the greatest sensitivity was
found to be changes to 16% of starch and 18% of pulses crop-regions
emphasises the low sensitivity of EcoCrop outputs to parameter speci-
fication under the conditions of our sensitivity analysis. As a complete
shift in sign of change, from positive to negative or the other way
around, was observed in only 1–12% of the crop-region combinations
under each scenario, the EcoCrop analysis can be considered to be ro-
bust.

3.3. Relationship between research intensity and nutrient output

In Fig. 3 we show the relationship between crop nutritional output
and the number of publications for each crop in that region under fu-
ture climate conditions. The results demonstrate the considerable re-
search investments for certain starch crops, shown by the cloud
grouping of crops in the upper right. These overinvestments occur

Table 3
Sensitivity analysis results. Crop-region suitability changes observed under the conditions of each of the sensitivity test. Values in brackets represent percentage
values.

No Change Increase to Decrease Decrease to Increase Neutral to Increase or Decrease Increase or Decrease to Neutral

Starch Pulse Starch Pulse Starch Pulse Starch Pulse Starch Pulse

Tmin+2C+1m 633
(87)

304
(88)

8
(1)

5
(1)

46
(6)

19
(6)

9
(1)

2
(1)

35
(5)

14
(4)

Tmin-2C+1m 659
(90)

314
(91)

30
(4)

14
(4)

14
(2)

5
(1)

19
(3)

5
(1)

9
(1)

6
(2)

Tmax+2C+1m 634
(87)

307
(89)

7
(1)

3
(1)

55
(8)

23
(7)

14
(2)

3
(1)

21
(3)

8
(2)

Tmax-2C+1m 635
(87)

300
(87)

38
(5)

26
(8)

22
(3)

4
(1)

14
(2)

3
(1)

22
(3)

11
(3)

Pre+25%+1m 642
(88)

312
(91)

15
(2)

6
(2)

24
(3)

8
(2)

8
(1)

2
(1)

42
(6)

16
(5)

Pre-25%+1m 617
(84)

289
(84)

27
(4)

17
(5)

30
(4)

19
(6)

33
(5)

10
(3)

24
(3)

9
(3)

Tmin+2C−1m 661
(90)

294
(85)

11
(2)

7
(2)

25
(3)

25
(7)

13
(2)

8
(2)

21
(3)

10
(3)

Tmin-2C−1m 633
(87)

289
(84)

31
(4)

13
(4)

17
(2)

16
(5)

35
(5)

10
(3)

15
(2)

16
(5)

Tmax+2C−1m 640
(88)

297
(86)

16
(2)

5
(1)

43
(6)

26
(8)

20
(3)

9
(3)

12
(2)

7
(2)

Tmax-2C−1m 649
(89)

298
(87)

40
(5)

19
(6)

12
(2)

10
(3)

20
(3)

9
(3)

10
(1)

8
(2)

Pre+25%−1m 620
(85)

281
(82)

21
(3)

12
(3)

46
(6)

32
(9)

15
(2)

5
(1)

29
(4)

14
(4)

Pre-25%−1m 647
(89)

300
(87)

30
(4)

17
(5)

15
(2)

9
(3)

31
(4)

14
(4)

8
(1)

4
(1)

+ 1m 662
(91)

315
(92)

10
(1)

9
(3)

24
(3)

7
(2)

14
(2)

3
(1)

21
(3)

13
(3)

−1m 660
(90)

304
(88)

20
(3)

8
(2)

17
(2)

15
(4)

19
(3)

9
(3)

15
(2)

8
(2)
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across multiple regions for staple crops including rice and maize
showing a disparity in research investments across crops. The “stripes”
in the lower part of the graph are an artefact of the log-transformation
on discrete small numbers (0, 1, 2, and 3 publications). The excessive
number of values of 1 (representing 0 publications) represent regions
that do not show publications for a particular crop, even though it is
widely grown. Publications may show this pattern because the pub-
lication level for a certain crop in a certain region may often drop to
zero in the absence of a specific research programme, rather than show
a more gradual difference. This pattern in data is why we used a zero-
inflated Poisson model, which takes into account this excess in zeros. We
found that among different variables the energy output of each crop
explains the zero inflation: lower energy output is associated with a
higher probability of being zero. Other variables, including region,
nutrient output, and monetary value of production did not explain the
zero inflation. The lines in the graph indicate the values predicted by
the Poisson model for starch crops (black line) and pulses (grey line),
respectively.

3.4. Determinants of crop-specific agricultural research intensity

To assess how our choice to determine crop-specific agricultural
research deficits by using nutritional output compares to using other
criteria, we ran a zero-inflated Poisson model with more variables
(Table 4). We scaled the variables to have a mean of zero and a standard
deviation of 1, so that the size of each parameter reflects its relative

importance in explaining the number of publications for each crop in
each region, facilitating interpretation. The zero-inflation part of the
model shows that when energy output goes up, the probability of
having zero publications goes down. The results of the main model
show that the total energy output of crops in each region is the most
important variable explaining research intensity. Monetary value and
energy output are highly correlated and monetary value provides only a
small additional contribution. Nutrient output, however, has a sub-
stantial negative coefficient. This means that under equal conditions
(same energy output, same region, etc.), a crop with higher nutrient
output will receive less attention in scientific publications. Even though
nutrient output itself is positively correlated with research intensity
(see above, Section 3.3 and Fig. 3), this correlation seems to be due
purely to the correlation between nutrient and energy output. In itself,
the strong focus on energy in current research investments works
against research on nutrient-dense crops. On top of the nutritional bias,
there is also a bias against pulses, favouring starch crops. This clearly
means that adopting nutrient output as the main congruence criterion
indeed presents a major shift in crop-specific agricultural research
priorities. It is also important to see that, ceteris paribus, crops that are
expected to see a contraction in their suitable area under future cli-
mates currently have a slight, but statistically significant, higher re-
search intensity than crops that are expected to see an expansion or
remain stable. This is a small bias, but may indicate an overall vul-
nerability in how investments are made. There may be good reasons to
keep investing in crops that are expected to decrease in climate suit-
ability, but increasingly these investments would need to be directed to
climate adaptation efforts, even to maintain current levels of crop
productivity. It should be considered if these investments could not
have higher returns when channelled to research on crops that will do
better under future climates, increasing their productivity or improving
processing and value addition.

3.5. Benchmarking

In Table 5A and 5B, we present the results for the benchmarking of
starch and pulse crops. For each crop we show regional and global
research deficits and excesses, along with the value of the Nutrient Rich
Food index (NRF9.3) per 50 g of product. For comparative purposes,
three different benchmarked results are presented: (1) results from all
regions, (2) research deficit and excess in regions where the suitability
of respective crops is expected to be positively impacted by climate
change, and (3) research deficit and excess where respective crops are
expected to be negatively impacted by climate change. The numbers
under (2) and (3) add up to a number that is equal to (1), or lower than
(1) when there are regions where climate models did not agree on the
direction of the change in suitability. The crops are shown in alpha-
betical order. Fig. 4 presents the same data in a different format,
making it possible to see how excesses and deficits are spread across
regions. The last row of Fig. 4 is also informative in showing how total
research intensity is spread across regions. This represents the distance
of each region's intercept, from the regional regression, relative to the
average intercept for all regions. This output is displayed as a quartile
above or below this average. Results highlight the high research in-
vestments for Europe, whilst the contrary is true for regions of Asia, the
Americas, and Africa.

3.5.1. Starch crops
Sweetpotato, potato, and wheat have the largest overall research

deficits compared to the nutrients they are currently contributing to the
food system. These deficits are spread across the globe in both devel-
oped and developing regions. Sweetpotato was found to have no excess
of research in any of the regions and has the largest deficits in regions
where its suitability is likely to increase. Its high nutritional value is
behind this pattern. As an underresearched potential climate winner,
sweetpotato seems an important candidate for additional investment. In

Fig. 3. Relation between the regional nutritional output and regional number of
publications for each crop (both shown on a log scale). Black dots and the black
regression line represent starch crops, the grey line and dots are pulses. The two
regression lines have the same slope and only vary in their intersect.

Table 4
Zero-inflated Poisson model explaining the level of publications per region-crop
combination. The regional contributions are omitted for reasons of space, but
were also highly significant. Variables marked with an asterisk (*) were log-
transformed and scaled to have a mean of zero and standard deviation of one, to
facilitate comparisons.

Variable – main model Coefficient Standard
error

z value p value

Intercept 1.17 0.16 −7.11 < <0.001
Energy output* 3.68 0.04 95.68 < <0.001
Monetary value of crop

production*
0.12 0.04 3.07 0.021

Positive change or stable in
future climate
suitability

−0.09 0.02 −5.72 < <0.001

Crop group (pulses) −0.84 0.03 −28.33 < <0.001
Nutrient output* −2.29 0.04 −57.25 < <0.001
Variable – zero-inflation

model****8
Energy output* −0.15 0.05 −2.65 0.008
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contrast, for potato and wheat the situation is more complicated. Potato
and wheat were found to have both research excesses across distinct
regions, although in comparatively far smaller levels compared to their
deficits. Potato has research deficits mainly in regions where the crop
will likely experience less suitable climate conditions. For wheat, the
deficits are distributed across regions with negative and positive cli-
mate effects. Regions in Asia, including China and India, show high
research excesses for wheat and likely decreased suitability for the crop.

Only maize, rice, and barley have a net research excess both re-
gionally and globally. In the case of maize, regions with excessive re-
search are spread across the globe. In the case of rice, regions with
research excess are concentrated in Asia, where rice is likely to increase
in suitability under climate change. A concentrated investment in only
three crops is driving the mismatch with nutrient output. A more di-
versified way of allocating research funds will be crucial to ensure fu-
ture food and nutrition security. Fortunately, maize, rice, and barley are
not especially vulnerable to decreasing climate suitability globally, al-
though in certain regions, this may be an additional reason to consider
reallocating research investments.

Rye, oats, millet, sorghum, and buckwheat were found to be im-
portant potential climate winners among the cereals. All have regional
research deficits. These are generally hardy crops grown in stress-prone
environments. Millet, a group of several species, is grown in very di-
verse environments and has research deficits on all continents, apart
from the Americas. Millet species tend to be drought and heat tolerant.
For millet, the regional research deficit is almost half that of the global
deficit. Oat and buckwheat mainly occur in cold-stressed environments
in temperate regions with higher R&D investments compared to millet

and have similar regional and global deficits. Sorghum is under-
researched globally rather than regionally, as it is primarily grown in
poorer regions in the tropics.

Banana, a crop largely produced in tropical regions, was identified
to have research deficits in sub-tropical and temperate regions across all
continents, which may explain the observation of its global deficit being
almost double that of its regional deficit. Plantain, cassava, yam, and
taro similarly have global deficits larger than their regional research
deficits. Regions of research deficit are tightly concentrated in tropical
regions, where these crops are grown. Tropical regions receive less
research investment than the global average. Sweetpotato, plantain,
and taro are not overresearched in any region. The research deficits of
banana, plantain, cassava, and yam are all concentrated in areas with
projected increases of climate suitability of these crops. This makes the
crops in this group important candidates for increased research in-
vestments.

3.5.2. Pulses
Indices of research deficits and excesses show that common bean,

lentil, chickpea, and broad bean to be the most research deficient crops
using both global and regional benchmarks. In regions where climate
changed was modelled to potentially have positive impacts, lentil and
broad bean were the most underresearched pulses. Lentil was found to
have research deficits across all continents, spanning regions with both
high and low R&D investments. Broad bean was identified with re-
search deficits across temperate regions.

Cowpea and lupin under these conditions were both over-
researched, with respect to their nutritional output. These crops were

Table 5A
Current research deficits and excesses for starch crops (in number of publications).

Crop NRF9.3
(per 50 g)

All regions Regions where crop increases in suitability Regions where crop decreases in suitability

Regional Global Regional Global Regional Global

Deficit Excess Deficit Excess Deficit Excess Deficit Excess Deficit Excess Deficit Excess

Banana 24 546 27 1096 52 512 17 941 51 30 6 126 0
Barley 63 60 1421 362 1711 15 860 131 1022 44 490 206 688
Buckwheat 74 249 38 269 83 247 12 235 83 3 0 4 0
Cassava 30 297 73 1366 41 154 57 863 0 72 67 400 41
Maize 24 24 4963 685 4798 2 4242 414 4059 22 898 234 739
Millet 52 306 20 670 30 298 20 571 30 8 0 99 0
Oats 80 649 19 792 42 339 19 402 0 308 19 345 42
Plantain 46 244 0 904 0 211 0 771 0 33 0 133 0
Potato 34 2450 198 3325 568 679 168 1303 403 1761 54 1962 164
Quinoa 72 0 14 4 0 0 14 0 0 0 14 4 0
Rice 36 188 4786 1329 5895 55 279 615 5437 22 151 253 176
Rye 71 771 0 631 33 503 0 339 25 262 0 174 8
Sorghum 59 252 146 815 80 201 74 380 70 48 29 375 0
Sweetpotato 161 3416 0 3315 0 2865 0 1957 0 515 0 1259 0
Taro 34 374 0 325 0 325 0 177 0 50 0 148 0
Wheat 69 1291 649 4834 2882 622 223 2780 842 668 622 2027 2039
Yam 42 198 3 430 10 183 0 363 5 13 0 66 0

Table 5B
Regional and global research deficits and excesses for pulses (in number of publications).

Crop NRF9.3 (per 50 g) All regions Regions where crop increases in suitability Regions where crop decreases in suitability

Regional Global Regional Global Regional Global

Deficit Excess Deficit Excess Deficit Excess Deficit Excess Deficit Excess Deficit Excess

Broad bean 46 344 0 87 20 260 0 40 16 83 0 47 4
Chickpea 83 199 124 145 295 164 55 92 166 35 32 45 129
C´mon bean 36 772 38 413 129 163 38 76 57 596 27 333 73
Cowpea 113 49 112 70 115 32 84 42 79 17 34 28 36
Lentil 86 375 27 205 59 277 17 129 43 98 0 76 16
Lupin 135 21 60 11 171 4 37 0 67 17 37 11 104
Pigeonpea 115 148 4 127 0 114 4 78 0 35 4 48 0
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found to have far larger regional research deficits than global deficits.
Chickpea research shows regional deficits, while from a global per-
spective the crop is net overresearched. This paradox means that re-
search is concentrated in areas where the crop is not a major food crop
for national consumption.

Pigeonpea and common bean were found to have regional deficits
and global deficits, with their regional deficits higher than their global.
The deficits for pigeon pea are located in tropical regions. Deficits for
common bean are located in more temperate regions with higher R&D
investments. It is strongly underresearched in large parts of Asia, but in
these same areas, the crop is also projected to decrease in suitability.
Cowpea was found to have an almost identical global and regional re-
search deficit.

3.6. Regional patterns

Fig. 5 maps the geographical distribution of regional research def-
icits where crops were positively impacted by climate change. The re-
search deficits for starch crops are, in general, heterogeneous, with both
developed and developing regions displaying research deficiencies
(Fig. 5a). In almost all regions, at least one crop was found to have a
research deficit. We also identified regional clusters of research defi-
ciency; the northwest of North America, northern and southern Africa,
western South America, central Asia and China.

In contrast, pulses (Fig. 5b) showed far fewer regions with research
deficiencies, but in those regions where deficiencies were identified, the
proportion of crops with deficiencies was far higher. South Eastern
Europe, the Caucuses, western Asia, and east tropical Africa were par-
ticularly deficient. Whilst almost the entirety of North America was
found to be research deficient in at least 25% of analysed pulses.

4. Discussion

4.1. Comparisons with other studies

Other studies have shown scenarios with similar impacts of climate
change on the major crops. Rosenzweig et al. (2014) modelled that
higher latitudes would see increases in wheat, maize, and rice yields;
mid-latitudes increases in rice; with lower latitudes seeing general de-
clines in crop yields. These results are generally mirrored in our suit-
ability results. These results underline the importance of research
identifying the factors that make the major crops susceptible to climatic
changes (e.g. Jagadish et al., 2014; Reynolds et al., 2015).

Identified potential climate winner cereals including rye and millet
showed great potential for cultivation under the modelled climatic
changes, in many cases in regions where other cereals were found to be
inhibited by climate change. At the same time, these crop species have
large regional and global research deficits. Other modelling exercises
gave similar results, showing the climate adaptation potential of these
crops (Lobell et al., 2011; Challinor et al., 2014). A study in semi-arid
eastern Zimbabwe, however, found that maize frequently out yields
millets and sorghum, concluding that combining maize with millets
and/or sorghum will be more realistic than a total replacement of maize
(Rurinda et al., 2014). This same study also argues that substantial
investments are needed to make millet more attractive to farmers, in-
cluding the creation of better marketing channels for this crop, but that
improved maize storage also deserves attention. It is important to point
out that the results of our study only give an indication of the relative R
&D effort suggested by the current contribution of crops to human
nutrition and the degree to which climate change challenges future
production. The results should not be interpreted as suggesting that R&
D investment in certain crops, such as maize, should necessarily de-
crease in absolute terms.

Sweetpotato, a nutrient-rich crop, is modelled to expand on all
continents, yet currently has extremely high regional and global re-
search deficits. Naylor et al. (2004) highlight the benefits of investment

Fig. 4. Research intensity and climate impact for all crops and regions. Research intensity is categorised in quartiles above and below regional regression line. White
represents crop-regions without data. Symbols show crop-region combinations that will benefit (↓), suffer (↑), or see no major change (-) due to climate change.
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in research of orphan crops like sweetpotato and millets, findings ap-
parently gone unheeded. These results also demonstrate that such re-
allocation should be global, with research deficits found in both de-
veloped and developing countries, with pulses found to be especially
research deficient in developed regions.

In an analysis similar to our own study (using the EcoCrop model),
Jarvis et al. (2012) found that cassava will largely benefit from climate
change, demonstrating the potential of cassava in climate change
adaptation of African agriculture, and claiming the crop will play an
important role. Our results put this call for attention for cassava in
perspective. Our results confirm the potential of cassava under future
climates. Other tropical crops like sweetpotato, millet, plantains, ba-
nanas, yam, and taro, however, each have a larger research deficit than
cassava. Even though cassava is undeniably an important focus for
continued R&D investments in Africa, it already receives substantial
research attention. Other crops that can facilitate climate change
adaptation are relatively more underresearched. Our analysis demon-
strates that a broad perspective is needed to make objective R&D in-
vestment decisions. Current modelling exercises that narrowly focus on
a handful of crops for which sophisticated crop growth models are
available or that focus on crops that are covered by institutional man-
dates should be compared with analyses that take an inclusive, com-
parative perspective.

Pingali (2015) argues that the priorities of agricultural research

investors are incongruent to nutritional requirements. Our analysis
confirms quantitatively that an increased focus on nutrient output
would effectively need a change in research intensity across crops.
However, the development of crop-neutral investments, suggested by
Pingali (2015), is unlikely to be sufficient to shift the allocation of in-
vestments. R&D capacity needs foresight-based public investment for
future food and nutrition security. Global future public health benefits
do not translate automatically in short-term business gains. For one
thing, the climate signal does not translate into immediate business
opportunities, even though transformational change is needed for cli-
mate adaptation. In addition, we suggest that the focus should not only
shift from staple crops to more nutrient-dense fruits and vegetables, as
suggested by Pingali (2015), but it should also begin to shift within
staple crops. Emphasis could be increasingly moved towards potential
adaptive cereals such as millet, oats or rye, and more nutrient-dense,
adaptive staples such as sweetpotato, moving away from less adaptive,
less nutritive crops in certain regions.

4.2. Other factors important for prioritisation

The present study has generated a number of insights that should
influence the allocation of research investment with an improved focus
on climate change and human nutrition. However, other factors also
play an important role. Prioritisation should consider that changes in

Fig. 5. Proportion of starch crops and pulses in each region with a research deficit under regional benchmarking.
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the agronomic and social importance of crops will not be driven or
constrained by climate alone. Other drivers of change include growing
populations leading agricultural intensification and technological
change (Boserup, 1965), dietary shifts associated with growing afflu-
ence (Delgado, 2003; Kearney, 2010; Vranken et al., 2014), agronomic
factors including yields (Stoddard, 2013), and alternative crop pre-
ference (von Richthofen et al., 2006). These drivers will also contribute
to shifts in the importance of crop production. Voison et al. (2014)
highlight the nexus between agronomic and social factors by suggesting
that farm intensification and abandonment of traditional farming sys-
tems may also contribute to shifts in crop importance. Education and
information distribution may also limit novel or underutilised crop
production (Schneider, 2002; Manners, 2018, forthcoming).

The allocation of agricultural investments should account for these
points and consider the role of transformative changes. R&D invest-
ments may assist in driving dietary changes, through development of
palatable novel products using potential climate winner crops. It is
imperative that investments are made not only to investigate the
adaptive capacity of potential winner crops, but also the socio-eco-
nomic capacity to produce, process, and consume them. The benefits of
sweetpotato-based products, or those developed from other highly nu-
tritious crops like lentil, broad bean or chickpea would be lost if crops
rot in fields or processed products remain on shelves due to un-
responsive supply chains or a lack of demand. Magrini et al. (2016)
identified the need for encouragement of downstream industries to
drive demand for underutilised crops. This reinforces the importance of
value chains to steer the demand for crops and products that are both
climatically and socially adaptive. The shift in R&D to underresearched
crops may need to be accompanied by a shift in emphasis on R&D from
production to processing, marketing and education, and consumption.
These examples suggest the complexity behind shifts in the relative
importance of crops across regions, even without the added effects of
climate change. Therefore, any distribution in research efforts should
not only consider the climatic potential of a crop, but also its socio-
economic potential.

Eventually, different factors of influence should be considered
jointly with climate change, for instance through scenario analysis
(Vervoort et al., 2010). Multi-stakeholder prioritisation exercises, such
as those promoted by Campbell et al. (2016), would need to interpret
our results together with other results in consultations with a wide
range of stakeholders to arrive at more solid conclusions. This will re-
quire a more interactive approach to our research results than what we
can offer in this paper. Therefore, we offer our tables, scripts, and re-
sults as supplementary information to this article to allow more com-
prehensive exercises on crop research prioritisation under climate
change (Available here: https://doi.org/10.7910/DVN/WDMSOL).

5. Conclusions

This study has highlighted the potential global impacts of climate
change on an array of starch and pulse crops. Combining these results
with information on the research dedicated to these crops we have been
able to identify nutrient-rich crops that show adaptation potential to
climate change and that should become high priorities for future in-
vestigation. In particular, sweetpotato, wheat, broad bean, and lentil
were identified as climate change potential winner crops showing po-
tential for cultivation under climatic changes, yet were found to have
considerable research deficits in regions where they were found to in-
crease.

Therefore, it is prudent for further consideration to be made of these
underresearched crops, investigating their potential for climate change
adaptation, ensuring nutrient security, and the potential for re-
allocating funds away from nutrient-poor crops that are likely to be
affected by climate change. A number of these climate potential winner
crops were found to see gains across multiple continents and across
latitudes, reinforcing their diverse potential, and demonstrating that

these crops are underresearched on many occasions at global and re-
gional scales.

We hope that this study sparks a more rigorous debate on improved
targeting of funding allocation of nutrient-rich crop adaptation to cli-
mate change and that it will encourage future studies that expand and
refine our results. Future studies should also cover fruits and vegetables
as well as neglected and underutilised crops, in order to fully consider
the full range of crop R&D investment options for future food and nu-
trition security under climate change.
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Appendix A

Ecocrop Model Computation
As part of the Ecocrop model calculation 9 crop-specific parameters

are used, which offer information about the environmental adaptation
of a particular crop. These parameters include:

Kill minimum temperature (CropKillMinTemp)
Minimum temperature (CropMinTemp)
Minimum temperature for optimal range (CropMinTempOpt)
Maximum temperature for optimal range (CropMaxTempOpt)
Maximum temperature (CropMaxTemp)
Minimum precipitation (CropMinPrec)
Minimum precipitation for optimal range (CropMinPrecOpt)
Maximum precipitation for optimal range (CropMaxPrecOpt)
Maximum precipitation (CropMaxPrec)
Length of crop cycle (CropCycle)

These parameters were derived from the EcoCrop database, which
holds 2568 plant species (FAO, 2012). For all parameters except one we
used EcoCrop data directly. For the length of the crop cycle, the Eco-
Crop database gives a minimum and maximum value. We took the
geometric mean of the two values to get the CropCycle value. The ar-
ithmetic mean often gave unreasonably long crop cycles in the case of
annual crops, which will tend to underestimate the adaptation potential
of crops. The minimum crop cycle, on the other hand, was extremely
short and hardly representative of typical crop cycle values. The geo-
metric mean gives a value between the arithmetic mean and the
minimum value. For sorghum, the geometric mean gave a crop cycle of
6.5 months, close to the 6 months which gave the best fit in a modelling
exercise with EcoCrop by Ramirez-Villegas et al. (2013). For other
crops, also reasonable values were obtained with the geometric mean.

The following monthly climate data is used to determine the suit-
ability.

Monthly minimum temperature (MonthMinTemp)
Monthly mean temperature (MonthMeanTemp)
Monthly total precipitation (MonthTotalPrec)

The calculation of suitability is done in three steps.
Step 1. As a first step, a thermal suitability is calculated for each

month, a value between 0 (unsuitable) and 1 (fully suitable). This is
determined using the following rules, for each month.

• If the minimum temperature of the month is less than the kill
minimum temperature + 4 degrees Celsius of the crop, temperature
suitability is set to zero.

• If the mean temperature of the month is lower than the minimum
temperature of the crop or higher than the maximum temperature of
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the crop, temperature suitability is also zero.

• Between the minimum temperature of the crop and the minimum
temperature of the optimal range of the crop, the suitability for each
month i is determined according to the following formula:

• SuitabilityTempi = (MonthMeanTemp – CropMinTemp) /
(CropMinTempOpt - CropMinTemp)

• Likewise, if the mean temperature is higher than the minimum
temperature, but not high enough to reach the minimum tempera-
ture of the optimal range, the suitability for each month i is de-
termined according to the following formula:

SuitabilityTempi = (CropMaxTemp - MonthMeanTempi) /
(CropMaxTemp - CropMaxTempOpt)

Taking in turn each month i of the year as a possible start of the
growing season, the model evaluates the months that fall within the
crop cycle.

Step 2. Then the suitability of each month regarding the precipita-
tion is generated. Again, this is a value between 0 and 1. The EcoCrop
model evaluates the total accumulated rainfall during the length of the
crop cycle. The model takes in turn every month as the start of the crop
cycle, summing the rainfall over the consecutive period with length
CropCycle, including one month before and after this period. For each
of the 12 rainfall sums, it determines whether it falls in the permissible
range or in the optimal range.

• If the accumulated rainfall for the evaluated period is lower than the
minimum rainfall of the crop or higher than the maximum rainfall of
the crop, rainfall suitability is also zero.

• Between the minimum rainfall of the crop and the minimum rainfall
of the optimal range of the crop, the suitability is determined ac-
cording to the following formula:

• SuitabilityPreci = (MonthPreci – CropMinPrec) / (CropMinPrecOpt
– CropMinPrec)

• Likewise, if the accumulated rainfall is higher than the minimum
rainfall, but not high enough to reach the minimum rainfall of the
optimal range, the suitability for each month i is determined ac-
cording to the following formula:

SuitabilityPreci = (CropMaxPrec - MonthMeanPreci) /
(CropMaxPrec - CropMaxPrecOpt)

Step 3. From steps 1 and 2, we have two series of 12 suitability
values, for temperature and precipitation respectively. The two series of
values are combined by taking the minimum of the SutiabilityTemp and
SuitabilityPrec values, for the consecutive months until reaching
CropCycle. This results in a series of 12 suitability values. These values
correspond to the potential suitability of the cropping period following
each month of the year. The EcoCrop model reports the highest suit-
ability value as the overall suitability value, assuming that farmers
plant at the best moment. This does not take into account multiple
cropping cycles during a single year, but it does account for potential
shifts in planting dates as an adaptation measure taken by farmers.
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