703 research outputs found

    Dynamic Dilatonic Domain Walls

    Get PDF
    Motivated by the ``universe as a brane'' idea, we investigate the motion of a (D2)(D-2)-brane (or domain wall) that couples to bulk matter. Usually one would expect the spacetime outside such a wall to be time dependent however we show that in certain cases it can be static, with consistency of the Israel equations yielding relationships between the bulk metric and matter that can be used as ans\"atze to solve the Einstein equations. As a concrete model we study a domain wall coupled to a bulk dilaton with Liouville potentials for the dilaton both in the bulk and on the wall. The bulk solutions we find are all singular but some have black hole or cosmological horizons, beyond which our solutions describe domain walls moving in time dependent bulks. A significant period of world volume inflation occurs if the potential on the wall is not too steep; in some cases the bulk also inflates (with the wall comoving) while in others the wall moves relative to a non-inflating bulk. We apply our method to obtain cosmological solutions of Ho\v{r}ava-Witten theory compactified on a Calabi-Yau space. tive to a non-inflating bulk. We apply our method to obtain cosmological solutions of Ho\v{r}ava-Witten theory compactified on a Calabi-Yau space.Comment: 32 pages LaTeX, 5 .eps figures, corrected some typo

    Consistent histories, the quantum Zeno effect, and time of arrival

    Get PDF
    We present a decomposition of the general quantum mechanical evolution operator, that corresponds to the path decomposition expansion, and interpret its constituents in terms of the quantum Zeno effect (QZE). This decomposition is applied to a finite dimensional example and to the case of a free particle in the real line, where the possibility of boundary conditions more general than those hitherto considered in the literature is shown. We reinterpret the assignment of consistent probabilities to different regions of spacetime in terms of the QZE. The comparison of the approach of consistent histories to the problem of time of arrival with the solution provided by the probability distribution of Kijowski shows the strength of the latter point of view

    General Static Solutions of 2-dimensional Einstein-Dilaton-Maxwell-Scalar Theories

    Get PDF
    General static solutions of effectively 2-dimensional Einstein-Dilaton-Maxwell-Scalar theories are obtained. Our model action includes a class of 2-d dilaton gravity theories coupled with a U(1)U(1) gauge field and a massless scalar field. Therefore it also describes the spherically symmetric reduction of dd-dimensional Einstein-Scalar-Maxwell theories. The properties of the analytic solutions are briefly discussed.Comment: 16 pages, Latex fil

    Unstable particles in matter at a finite temperature: the rho and omega mesons

    Full text link
    Unstable particles (such as the vector mesons) have an important role to play in low mass dilepton production resulting from heavy ion collisions and this has been a subject of several investigations. Yet subtleties, such as the implications of the generalization of the Breit-Wigner formula for nonzero temperature and density, e.g. the question of collisional broadening, the role of Bose enhancement, etc., the possibility of the kinematic opening (or closing) of decay channels due to environmental effects, the problem of double counting through resonant and direct contributions, are often given insufficient emphasis. The present study attempts to point out these features using the rho and omega mesons as illustrative examples. The difference between the two versions of the Vector Meson Dominance Model in the present context is also presented. Effects of non-zero temperature and density, through vector meson masses and decay widths, on dilepton spectra are studied, for concreteness within the framework of a Walecka-type model, though most of the basic issues highlighted apply to other scenarios as well.Comment: text and figures modifie

    Dust detection by the wave instrument on STEREO: nanoparticles picked up by the solar wind?

    Get PDF
    The STEREO/WAVES instrument has detected a very large number of intense voltage pulses. We suggest that these events are produced by impact ionisation of nanoparticles striking the spacecraft at a velocity of the order of magnitude of the solar wind speed. Nanoparticles, which are half-way between micron-sized dust and atomic ions, have such a large charge-to-mass ratio that the electric field induced by the solar wind magnetic field accelerates them very efficiently. Since the voltage produced by dust impacts increases very fast with speed, such nanoparticles produce signals as high as do much larger grains of smaller speeds. The flux of 10-nm radius grains inferred in this way is compatible with the interplanetary dust flux model. The present results may represent the first detection of fast nanoparticles in interplanetary space near Earth orbit.Comment: In press in Solar Physics, 13 pages, 5 figure

    Algebraic approach to quantum black holes: logarithmic corrections to black hole entropy

    Full text link
    The algebraic approach to black hole quantization requires the horizon area eigenvalues to be equally spaced. As shown previously, for a neutral non-rotating black hole, such eigenvalues must be 2n2^{n}-fold degenerate if one constructs the black hole stationary states by means of a pair of creation operators subject to a specific algebra. We show that the algebra of these two building blocks exhibits U(2)U(1)×SU(2)U(2)\equiv U(1)\times SU(2) symmetry, where the area operator generates the U(1) symmetry. The three generators of the SU(2) symmetry represent a {\it global} quantum number (hyperspin) of the black hole, and we show that this hyperspin must be zero. As a result, the degeneracy of the nn-th area eigenvalue is reduced to 2n/n3/22^{n}/n^{3/2} for large nn, and therefore, the logarithmic correction term 3/2logA-3/2\log A should be added to the Bekenstein-Hawking entropy. We also provide a heuristic approach explaining this result, and an evidence for the existence of {\it two} building blocks.Comment: 15 pages, Revtex, to appear in Phys. Rev.

    Sneutrino cold dark matter, a new analysis: relic abundance and detection rates

    Get PDF
    We perform a new and updated analysis of sneutrinos as dark matter candidates, in different classes of supersymmetric models. We extend previous analyses by studying sneutrino phenomenology for full variations of the supersymmetric parameters which define the various models. We first revisit the standard Minimal Supersymmetric Standard Model, concluding that sneutrinos are marginally compatible with existing experimental bounds, including direct detection, provided they compose a subdominant component of dark matter. We then study supersymmetric models with the inclusion of right-handed fields and lepton-number violating terms. Simple versions of the lepton-number-violating models do not lead to phenomenology different from the standard case when the neutrino mass bounds are properly included. On the contrary, models with right-handed fields are perfectly viable: they predict sneutrinos which are compatible with the current direct detection sensitivities, both as subdominant and dominant dark matter components. We also study the indirect detection signals for such successful models: predictions for antiproton, antideuteron and gamma-ray fluxes are provided and compared with existing and future experimental sensitivities. The neutrino flux from the center of the Earth is also analyzed.Comment: 72 pages, 50 figures. The version on the archive has low-resolution figures. The paper with high resolution figures may be found through http://www.to.infn.it/~arina/papers or http://www.to.infn.it/~fornengo/Research/paperlist.htm

    Procoagulant Adaptation of a Blood Coagulation Prothrombinase-like Enzyme Complex in Australian Elapid Venom

    Get PDF
    The macromolecular enzyme complex prothrombinase serves an indispensable role in blood coagulation as it catalyzes the conversion of prothrombin to thrombin, a key regulatory enzyme in the formation of a blood clot. Interestingly, a virtually identical enzyme complex is found in the venom of some Australian elapid snakes, which is composed of a cofactor factor Va-component and a serine protease factor Xa-like subunit. This review will provide an overview of the identification and characterization of the venom prothrombinase complex and will discuss the rationale for its powerful procoagulant nature responsible for the potent hemostatic toxicity of the elapid venom

    Absorption cross section in Lifshitz black hole

    Full text link
    We derive the absorption cross section of a minimally coupled scalar in the Lifshitz black hole obtained from the new massive gravity. The absorption cross section reduces to the horizon area in the low energy and massless limit of s-wave mode propagation, indicating that the Lifshitz black hole also satisfies the universality of low energy absorption cross section for black holes.Comment: 13 pages, 1 figure, version to appear in EPJ
    corecore