297 research outputs found

    Rapid room temperature crystallization of TiO2 nanotubes

    Get PDF
    The paper reports a very efficient and reproducible technique for room temperature crystallization of titanium dioxide in a record time of 5 minutes, by application of alternating voltage square pulses. The well aligned tubular formation of crystalline nanotubes is confirmed through various characterizations and the mechanism of crystallization is explained based on the pulse induced electrophilic-nucleophilic reaction. This ultrafast pulsed crystallization method provides a viable alternative for the widely used post fabrication thermal annealing and is highly applicable in device fabrication.Peer ReviewedPostprint (author's final draft

    Understanding the bulk electronic structure of Ca1-xSrxVO3

    Full text link
    We investigate the electronic structure of Ca1-xSrxVO3 using careful state-of-the-art experiments and calculations. Photoemission spectra using synchrotron radiation reveal a hitherto unnoticed polarization dependence of the photoemission matrix elements for the surface component leading to a substantial suppression of its intensity. Bulk spectra extracted with the help of experimentally determined electron escape depth and estimated suppression of surface contributions resolve outstanding puzzles concerning the electronic structure in Ca1-xSrxVO3.Comment: 4 pages including 3 figure

    Missed cleavage opportunities by FEN1 lead to Okazaki fragment maturation via the long-flap pathway.

    Get PDF
    RNA-DNA hybrid primers synthesized by low fidelity DNA polymerase α to initiate eukaryotic lagging strand synthesis must be removed efficiently during Okazaki fragment (OF) maturation to complete DNA replication. In this process, each OF primer is displaced and the resulting 5'-single-stranded flap is cleaved by structure-specific 5'-nucleases, mainly Flap Endonuclease 1 (FEN1), to generate a ligatable nick. At least two models have been proposed to describe primer removal, namely short- and long-flap pathways that involve FEN1 or FEN1 along with Replication Protein A (RPA) and Dna2 helicase/nuclease, respectively. We addressed the question of pathway choice by studying the kinetic mechanism of FEN1 action on short- and long-flap DNA substrates. Using single molecule FRET and rapid quench-flow bulk cleavage assays, we showed that unlike short-flap substrates, which are bound, bent and cleaved within the first encounter between FEN1 and DNA, long-flap substrates can escape cleavage even after DNA binding and bending. Notably, FEN1 can access both substrates in the presence of RPA, but bending and cleavage of long-flap DNA is specifically inhibited. We propose that FEN1 attempts to process both short and long flaps, but occasional missed cleavage of the latter allows RPA binding and triggers the long-flap OF maturation pathway

    Cholecystoduodenal Stenting: An Option in Complicated Acute Calculous Cholecystitis in the Elderly Comorbid Patient

    Get PDF
    We describe the course of an 84-year-old lady with acute calculous cholecystitis. She was unable to have a cholecystectomy due to multiple comorbidities including morbid obesity, type 2 diabetes, Guillain–Barrè syndrome, chronic sacral pressure ulcer, and severe cardiac disease. Conservative treatment with intravenous antibiotics was initially successful; however, she subsequently re-presented with an empyema of the gallbladder. She was readmitted for further intravenous antibiotics and underwent percutaneous gallbladder drainage. The patient did not want a permanent catheter for drainage, nor the prospect of repeat drainage procedures in the future for recurrent cholecystitis. Following a discussion of the rationale and risks involved with other minimally invasive techniques, she underwent cholecystoduodenal stent placement following disimpaction and removal of cystic duct stones. The procedure restored antegrade gallbladder drainage, and at 18 months she remains symptom-free from her gallbladder. Long-term management of recurrent cholecystitis in elderly comorbid patients commonly includes permanent cholecystostomy or repeated percutaneous gallbladder drainage, both of which can be poorly tolerated. Permanent cholecystoduodenal stenting is a reasonable alternative in carefully considered patients in whom the benefits outweigh the risks. We describe our experience with cholecystoduodenal stenting and discuss some of the concerns and considerations with this technique

    Molecular pathogenicity of 1-nonadecene and l-lactic acid, unique metabolites in radicular cysts and periapical granulomas

    Get PDF
    Recently, 1-nonadecene and l-lactic acid were identified as unique metabolites in radicular cysts and periapical granuloma, respectively. However, the biological roles of these metabolites were unknown. Therefore, we aimed to investigate the inflammatory and mesenchymal-epithelial transition (MET) effects of 1-nonadecene, and the inflammatory and collagen precipitation effects of l-lactic acid on both periodontal ligament fibroblasts (PdLFs) and peripheral blood mononuclear cells (PBMCs). PdLFs and PBMCs were treated with 1-nonadecene and l-lactic acid. Cytokines’ expression was measured using quantitative real-time polymerase chain reaction (qRT-PCR). E-cadherin, N-cadherin, and macrophage polarization markers were measured using flow cytometry. The collagen, matrix metalloproteinase (MMP)-1, and released cytokines were measured using collagen assay, western blot, and Luminex assay, respectively. In PdLFs, 1-nonadecene enhances inflammation through the upregulation of some inflammatory cytokines including IL-1β, IL-6, IL-12A, monocyte chemoattractant protein (MCP)-1, and platelet-derived growth factor (PDGF) α. 1-Nonadecene also induced MET through the upregulation of E-cadherin and the downregulation of N-cadherin in PdLFs. 1-Nonadecene polarized macrophages to a pro-inflammatory phenotype and suppressed their cytokines’ release. l-lactic acid exerted a differential impact on the inflammation and proliferation markers. Intriguingly, l-lactic acid induced fibrosis-like effects by enhancing collagen synthesis, while inhibiting MMP-1 release in PdLFs. These results provide a deeper understanding of 1-nonadecene and l-lactic acid’s roles in modulating the microenvironment of the periapical area. Consequently, further clinical investigation can be employed for target therapy

    One-dimensional Rashba states with unconventional spin texture in Bi chains

    Get PDF
    Spin-polarized electrons confined in low-dimensional structures are of high interest for spintronics applications. Here, we investigate the electronic structure of an ordered array of Bi monomer and dimer chains on the Ag(110) surface. By means of spin-resolved photoemission spectroscopy, we find Rashba-Bychkov split bands crossing the Fermi level with one-dimensional constant energy contours. These bands are up-spin polarized for positive wave vectors and down-spin polarized for negative wave vectors, at variance with the Rashba-Bychkov model that predicts a pair of states with opposite spin in each half of the surface Brillouin zone. Density functional theory shows that spin-selective hybridization with the Ag bulk bands originates this unconventional spin texture

    Not all SCN1A epileptic encephalopathies are Dravet syndrome: Early profound Thr226Met phenotype.

    Get PDF
    OBJECTIVE: To define a distinct SCN1A developmental and epileptic encephalopathy with early onset, profound impairment, and movement disorder. METHODS: A case series of 9 children were identified with a profound developmental and epileptic encephalopathy and SCN1A mutation. RESULTS: We identified 9 children 3 to 12 years of age; 7 were male. Seizure onset was at 6 to 12 weeks with hemiclonic seizures, bilateral tonic-clonic seizures, or spasms. All children had profound developmental impairment and were nonverbal and nonambulatory, and 7 of 9 required a gastrostomy. A hyperkinetic movement disorder occurred in all and was characterized by dystonia and choreoathetosis with prominent oral dyskinesia and onset from 2 to 20 months of age. Eight had a recurrent missense SCN1A mutation, p.Thr226Met. The remaining child had the missense mutation p.Pro1345Ser. The mutation arose de novo in 8 of 9; for the remaining case, the mother was negative and the father was unavailable. CONCLUSIONS: Here, we present a phenotype-genotype correlation for SCN1A. We describe a distinct SCN1A phenotype, early infantile SCN1A encephalopathy, which is readily distinguishable from the well-recognized entities of Dravet syndrome and genetic epilepsy with febrile seizures plus. This disorder has an earlier age at onset, profound developmental impairment, and a distinctive hyperkinetic movement disorder, setting it apart from Dravet syndrome. Remarkably, 8 of 9 children had the recurrent missense mutation p.Thr226Met

    Depth dependence of itinerant character in Mn-substituted Sr3Ru2O7

    Full text link
    We present a core-level photoemission study of Sr3(Ru 1-xMnx)2O7, in which we monitor the evolution of the Ru-3d fine structure versus Mn substitution and probing depth. In both Ru 3d3/2 and 3d5/2 core levels we observe a clear suppression of the metallic features, i.e. the screened peaks, implying a sharp transition from itinerant to localized character already at low Mn concentrations. The comparison between soft and hard x-ray photoemission, which provides tunable depth sensitivity, reveals that the degree of localized/metallic character for Ru is different at the surface than in the bulk.Comment: 10 pages, 4 figures, 1 tabl

    Physics and Applications of Laser Diode Chaos

    Full text link
    An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.Comment: Published in Nature Photonic
    corecore