8 research outputs found

    On the origin of El Chichón volcano and subduction of Tehuantepec Ridge : a geodynamical perspective

    No full text
    The origin of El Chichón volcano is poorly understood, and we attempt in this study to demonstrate that the Tehuantepec Ridge (TR), a major tectonic discontinuity on the Cocos plate, plays a key role in determining the location of the volcano by enhancing the slab dehydration budget beneath it. Using marine magnetic anomalies we show that the upper mantle beneath TR undergoes strong serpentinization, carrying significant amounts of water into subduction. Another key aspect of the magnetic anomaly over southern Mexico is a long-wavelength (~150 km) high amplitude (~500 nT) magnetic anomaly located between the trench and the coast. Using a 2D joint magnetic-gravity forward model, constrained by the subduction P–T structure, slab geometry and seismicity, we find a highly magnetic and low-density source located at 40–80 km depth that we interpret as a partially serpentinized mantle wedge formed by fluids expelled from the subducting Cocos plate. Using phase diagrams for sediments, basalt and peridotite, and the thermal structure of the subduction zone beneath El Chichón we find that ~40% of sediments and basalt dehydrate at depths corresponding with the location of the serpentinized mantle wedge, whereas the serpentinized root beneath TR strongly dehydrates (~90%) at depths of 180-200 km comparable with the slab depths beneath El Chichón (200- 220 km). We conclude that this strong deserpentinization pulse of mantle lithosphere beneath TR at great depths is responsible for the unusual location, singularity and, probably, the geochemically distinct signature (adakitic-like) of El Chichón volcano

    Sediment fill in the Middle America Trench inferred from gravity anomalies

    Get PDF
    Una secuencia de perfiles de anomalía de gravedad de aire libre a través de la Trinchera de Mesoamérica es usada para modelar el relleno sedimentario de los facies sedimentarios no consolidados pelágicos y hemipelágicos y del material parcialmente alterado del basamento. La diferencia entre los mínimos gravimétricos y batimétricos se utiliza en la estimación de la cantidad de los sedimentos de densidad baja. El efecto de gravedad de relleno es relativamente pequeño, sugiriendo que el proceso mayor en la Trinchera de Mesoamérica es la subducción de sedimentos y el raspar de los sedimentos pelágicos desde la cima de la placa oceánica subducida. El volumen de los sedimentos en la trinchera tiende a incrementarse hacia el sur desde Jalisco hasta Oaxaca. Esta tendencia está menos clara en la Cuenca de Guatemala. Hay una cierta correlación entre el monto de relleno sedimentario fresco y la velocidad de convergencia a la trinchera excepto los perfiles con una contribución terrígena de sedimentos o las áreas de subducción de las entidades batimétricas importantes. doi: https://doi.org/10.22201/igeof.00167169p.2003.42.4.31

    Mantle temperature control on composition of arc magmas along the Central Kamchatka Depression

    Get PDF
    Abundant volcanism in the Central Kamchatka Depression (CKD) adjacent to the Kamchatka–Aleutian Arc junction occurs where the Pacific slab edge is subducting beneath Kamchatka. Here we summarize published data on CKD rocks and demonstrate a systematic south-to-north change of their compositions from moderately fractionated basalt-andesite tholeiitic series to highly fractionated basalt-rhyolite calc-alkaline series including high-magnesian andesites near the slab edge. Localized slab melting at the slab edge cannot explain these regional geochemical variations. Instead, we propose that the thermal state of the mantle wedge can be the key factor governing the composition of CKD magmas. We integrate the results from petrology and numeric modeling to demonstrate the northward decrease of the mantle wedge temperatures beneath CKD volcanoes, which correlates with decreasing slab dip, length of mantle columns, and magma flux. We envision two petrogenetic models, which relate the composition of erupted magmas to the subduction parameters beneath the CKD. The first model suggests that mantle temperature governs melt-peridotite equilibria and favors generation of andesitic primary melts in cold mantle regions above the shallowly subducting Pacific slab edge. Alternatively, mantle temperature may control magmatic productivity along the CKD, which decreases sharply toward the slab edge and thus allows more extensive magma fractionation deeper in the crust and mixing of highly evolved and mantle-derived magmas to generate Si-rich “primitive” magmas. These results point to a possible casual link between deep mantle and shallow crustal magmatic processes. Similar effects of mantle temperature on the composition and productivity of arc magmatism are expected elsewhere, particularly in volcanic regions associated with significant slab dip variation along the arc

    Seismogenesis of dual subduction beneath Kanto, central Japan controlled by fluid release

    Get PDF
    Abstract Dual subduction represents an unusual case of subduction where one oceanic plate subducts on top of another, creating a highly complex tectonic setting. Because of the complex interaction between the two subducted plates, the origin of seismicity in such region is still not fully understood. Here we investigate the thermal structure of dual subduction beneath Kanto, central Japan formed as a consequence of a unique case of triple trench junction. Using high-resolution three-dimensional thermo-mechanical models tailored for the specific dual subduction settings beneath Kanto, we show that, compared with single-plate subduction systems, subduction of double slabs produces a strong variation of mantle flow, thermal and fluid release pattern that strongly controls the regional seismicity distribution. Here the deepening of seismicity in the Pacific slab located under the Philippine Sea slab is explained by delaying at greater depths (~150 km depth) of the eclogitization front in this region. On the other hand, the shallower seismicity observed in the Philippine Sea slab is related to a young and warm plate subduction and probably to the presence of a hot mantle flow traveling underneath the slab and then moving upward on top of the slab

    La Voz de Liébana revista quincenal de intereses generales: Año III Número 81 - 10 diciembre 1906

    No full text
    Finasteride has proved to be relatively safe and effective in the therapeutic management of male androgenic alopecia. However, literature data report several endocrine imbalances inducing various adverse effects, which often persist after treatment cessation in the form of post-finasteride syndrome. Here we present the case of a 52-year-old man receiving finasteride (1 mg/day) who developed an uncommon adverse effect represented by generalized vitiligo 2 months after finasteride discontinuation. Associated adverse effects encountered were represented by mild sexual dysfunction (as determined by the International Index of Erectile Function, IIEF) and moderate depressive symptoms (according to DSM-V criteria), all of these manifestations aggregating within/as a possible post-finasteride syndrome. Further studies should develop and compare several therapeutic approaches, taking into account not only compounds that decrease the circulating dihydrotestosterone level but also those that could block the dihydrotestosterone receptors (if possible, compounds with selective tropism towards the skin). In addition, the possibility of predicting adverse effects of finasteride (according to hand preference and sexual orientation) should be taken into account

    Slab mantle dehydrates beneath Kamchatka – yet recycles water into the deep mantle

    Get PDF
    The subduction of hydrated slab mantle is the most important and yet weakly constrained factor in the quantification of the Earth's deep geologic water cycle. The most critical unknowns are the initial hydration state and the dehydration behavior of the subducted oceanic mantle. Here we present a combined thermomechanical, thermodynamic, and geochemical model of the Kamchatka subduction zone that indicates significant dehydration of subducted slab mantle beneath Kamchatka. Evidence for the subduction of hydrated oceanic mantle comes from across‐arc trends of boron concentrations and isotopic compositions in arc volcanic rocks. Our thermodynamic‐geochemical models successfully predict the complex geochemical patterns and the spatial distribution of arc volcanoes in Kamchatka assuming the subduction of hydrated oceanic mantle. Our results show that water content and dehydration behavior of the slab mantle beneath Kamchatka can be directly linked to compositional features in arc volcanic rocks. Depending on hydration depth of the slab mantle, our models yield water recycling rates between 1.1 × 103 and 7.4 × 103 Tg/Ma/km corresponding to values between 0.75 × 106 and 5.2 × 106 Tg/Ma for the entire Kamchatkan subduction zone. These values are up to one order of magnitude lower than previous estimates for Kamchatka, but clearly show that subducted hydrated slab mantle significantly contributes to the water budget in the Kamchatkan subduction zone

    High He-3/He-4 in central Panama reveals a distal connection to the Galapagos plume

    Get PDF
    It is well established that mantle plumes are the main conduits for upwelling geochemically enriched material from Earth's deep interior. The fashion and extent to which lateral flow processes at shallow depths may disperse enriched mantle material far (>1,000 km) from vertical plume conduits, however, remain poorly constrained. Here, we report He and C isotope data from 65 hydrothermal fluids from the southern Central America Margin (CAM) which reveal strikingly high He-3/He-4 (up to 8.9R(A)) in low-temperature (10.3R(A) (and potentially up to 26R(A), similar to Galapagos hotspot lavas) markedly greater than the upper mantle range (8 +/- 1R(A)). Lava geochemistry (Pb isotopes, Nb/U, and Ce/Pb) and geophysical constraints show that high He-3/He-4 values in central Panama are likely derived from the infiltration of a Galapagos plume-like mantle through a slabwindowthat opened similar to 8 Mya. Two potential transport mechanisms can explain the connection between the Galapagos plume and the slab window: 1) sublithospheric transport of Galapagos plume material channeled by lithosphere thinning along the Panama Fracture Zone or 2) active upwelling of Galapagos plume material blown by a "mantle wind" toward the CAM. We present a model of global mantle flow that supports the second mechanism, whereby most of the eastward transport of Galapagos plume material occurs in the shallow asthenosphere. These findings underscore the potential for lateral mantle flow to transport mantle geochemical heterogeneities thousands of kilometers away from plume conduits
    corecore