120 research outputs found

    New Algorithm to Determine True Colocalization in Combination with Image Restoration and Time-Lapse Confocal Microscopy to Map Kinases in Mitochondria

    Get PDF
    The subcellular localization and physiological functions of biomolecules are closely related and thus it is crucial to precisely determine the distribution of different molecules inside the intracellular structures. This is frequently accomplished by fluorescence microscopy with well-characterized markers and posterior evaluation of the signal colocalization. Rigorous study of colocalization requires statistical analysis of the data, albeit yet no single technique has been established as a standard method. Indeed, the few methods currently available are only accurate in images with particular characteristics. Here, we introduce a new algorithm to automatically obtain the true colocalization between images that is suitable for a wide variety of biological situations. To proceed, the algorithm contemplates the individual contribution of each pixel's fluorescence intensity in a pair of images to the overall Pearsońs correlation and Manders' overlap coefficients. The accuracy and reliability of the algorithm was validated on both simulated and real images that reflected the characteristics of a range of biological samples. We used this algorithm in combination with image restoration by deconvolution and time-lapse confocal microscopy to address the localization of MEK1 in the mitochondria of different cell lines. Appraising the previously described behavior of Akt1 corroborated the reliability of the combined use of these techniques. Together, the present work provides a novel statistical approach to accurately and reliably determine the colocalization in a variety of biological images

    Nutrient stress alters the glycosylation status of LGR5 resulting in reduced protein stability and membrane localisation in colorectal tumour cells: implications for targeting cancer stem cells

    Get PDF
    BACKGROUND LGR5 is an important marker of intestinal stem cells and performs its vital functions at the cell membrane. Despite the importance of LGR5 to both normal and cancer stem cell biology, it is not known how microenvironmental stress affects the expression and subcellular distribution of the protein. METHODS Nutrient stress was induced through glucose starvation. Glycosylation status was assessed using endoglycosidase or tunicamycin treatment. Flow cytometry and confocal microscopy were used to assess subcellular distribution of LGR5. RESULTS Glucose deprivation altered the glycosylation status of LGR5 resulting in reduced protein stability and cell surface expression. Furthermore, inhibiting LGR5 glycosylation resulted in depleted surface expression and reduced localisation in the cis-Golgi network. CONCLUSIONS Nutrient stress within a tumour microenvironment has the capacity to alter LGR5 protein stability and membrane localisation through modulation of LGR5 glycosylation status. As LGR5 surface localisation is required for enhanced Wnt signalling, this is the first report to show a mechanism by which the microenvironment could affect LGR5 function

    Replacement of α-galactosidase A in Fabry disease: effect on fibroblast cultures compared with biopsied tissues of treated patients

    Get PDF
    The function and intracellular delivery of enzyme therapeutics for Fabry disease were studied in cultured fibroblasts and in the biopsied tissues of two male patients to show diversity of affected cells in response to treatment. In the mutant fibroblasts cultures, the final cellular level of endocytosed recombinant α-galactosidases A (agalsidases, FabrazymeTM, and ReplagalTM) exceeded, by several fold, the amount in control fibroblasts and led to efficient direct intra-lysosomal hydrolysis of (3H)Gb3Cer. In contrast, in the samples from the heart and some other tissues biopsied after several months of enzyme replacement therapy (ERT) with FabrazymeTM, only the endothelial cells were free of storage. Persistent Gb3Cer storage was found in cardiocytes (accompanied by increase of lipopigment), smooth muscle cells, fibroblasts, sweat glands, and skeletal muscle. Immunohistochemistry of cardiocytes demonstrated, for the first time, the presence of a considerable amount of the active enzyme in intimate contact with the storage compartment. Factors responsible for the limited ERT effectiveness are discussed, namely post-mitotic status of storage cells preventing their replacement by enzyme supplied precursors, modification of the lysosomal system by longstanding storage, and possible relative lack of Sap B. These observations support the strategy of early treatment for prevention of lysosomal storage

    Stroma Regulates Increased Epithelial Lateral Cell Adhesion in 3D Culture: A Role for Actin/Cadherin Dynamics

    Get PDF
    Cell shape and tissue architecture are controlled by changes to junctional proteins and the cytoskeleton. How tissues control the dynamics of adhesion and cytoskeletal tension is unclear. We have studied epithelial tissue architecture using 3D culture models and found that adult primary prostate epithelial cells grow into hollow acinus-like spheroids. Importantly, when co-cultured with stroma the epithelia show increased lateral cell adhesions. To investigate this mechanism further we aimed to: identify a cell line model to allow repeatable and robust experiments; determine whether or not epithelial adhesion molecules were affected by stromal culture; and determine which stromal signalling molecules may influence cell adhesion in 3D epithelial cell cultures.The prostate cell line, BPH-1, showed increased lateral cell adhesion in response to stroma, when grown as 3D spheroids. Electron microscopy showed that 9.4% of lateral membranes were within 20 nm of each other and that this increased to 54% in the presence of stroma, after 7 days in culture. Stromal signalling did not influence E-cadherin or desmosome RNA or protein expression, but increased E-cadherin/actin co-localisation on the basolateral membranes, and decreased paracellular permeability. Microarray analysis identified several growth factors and pathways that were differentially expressed in stroma in response to 3D epithelial culture. The upregulated growth factors TGFβ2, CXCL12 and FGF10 were selected for further analysis because of previous associations with morphology. Small molecule inhibition of TGFβ2 signalling but not of CXCL12 and FGF10 signalling led to a decrease in actin and E-cadherin co-localisation and increased paracellular permeability.In 3D culture models, paracrine stromal signals increase epithelial cell adhesion via adhesion/cytoskeleton interactions and TGFβ2-dependent mechanisms may play a key role. These findings indicate a role for stroma in maintaining adult epithelial tissue morphology and integrity

    Gliadin Peptide P31-43 Localises to Endocytic Vesicles and Interferes with Their Maturation

    Get PDF
    BACKGROUND: Celiac Disease (CD) is both a frequent disease (1:100) and an interesting model of a disease induced by food. It consists in an immunogenic reaction to wheat gluten and glutenins that has been found to arise in a specific genetic background; however, this reaction is still only partially understood. Activation of innate immunity by gliadin peptides is an important component of the early events of the disease. In particular the so-called "toxic" A-gliadin peptide P31-43 induces several pleiotropic effects including Epidermal Growth Factor Receptor (EGFR)-dependent actin remodelling and proliferation in cultured cell lines and in enterocytes from CD patients. These effects are mediated by delayed EGFR degradation and prolonged EGFR activation in endocytic vesicles. In the present study we investigated the effects of gliadin peptides on the trafficking and maturation of endocytic vesicles. METHODS/PRINCIPAL FINDINGS: Both P31-43 and the control P57-68 peptide labelled with fluorochromes were found to enter CaCo-2 cells and interact with the endocytic compartment in pulse and chase, time-lapse, experiments. P31-43 was localised to vesicles carrying early endocytic markers at time points when P57-68-carrying vesicles mature into late endosomes. In time-lapse experiments the trafficking of P31-43-labelled vesicles was delayed, regardless of the cargo they were carrying. Furthermore in celiac enterocytes, from cultured duodenal biopsies, P31-43 trafficking is delayed in early endocytic vesicles. A sequence similarity search revealed that P31-43 is strikingly similar to Hrs, a key molecule regulating endocytic maturation. A-gliadin peptide P31-43 interfered with Hrs correct localisation to early endosomes as revealed by western blot and immunofluorescence microscopy. CONCLUSIONS: P31-43 and P57-68 enter cells by endocytosis. Only P31-43 localises at the endocytic membranes and delays vesicle trafficking by interfering with Hrs-mediated maturation to late endosomes in cells and intestinal biopsies. Consequently, in P31-43-treated cells, Receptor Tyrosine Kinase (RTK) activation is extended. This finding may explain the role played by gliadin peptides in inducing proliferation and other effects in enterocytes from CD biopsies

    Androgen-Induced Cell Migration: Role of Androgen Receptor/Filamin A Association

    Get PDF
    Background: Androgen receptor (AR) controls male morphogenesis, gametogenesis and prostate growth as well as development of prostate cancer. These findings support a role for AR in cell migration and invasiveness. However, the molecular mechanism involved in AR-mediated cell migration still remains elusive. Methodology/Principal Findings: Mouse embryo NIH3T3 fibroblasts and highly metastatic human fibrosarcoma HT1080 cells harbor low levels of transcriptionally incompetent AR. We now report that, through extra nuclear action, AR triggers migration of both cell types upon stimulation with physiological concentrations of the androgen R1881. We analyzed the initial events leading to androgen-induced cell migration and observed that challenging NIH3T3 cells with 10 nM R1881 rapidly induces interaction of AR with filamin A (FlnA) at cytoskeleton. AR/FlnA complex recruits integrin beta 1, thus activating its dependent cascade. Silencing of AR, FlnA and integrin beta 1 shows that this ternary complex controls focal adhesion kinase (FAK), paxillin and Rac, thereby driving cell migration. FAK-null fibroblasts migrate poorly and Rac inhibition by EHT impairs motility of androgen-treated NIH3T3 cells. Interestingly, FAK and Rac activation by androgens are independent of each other. Findings in human fibrosarcoma HT1080 cells strengthen the role of Rac in androgen signaling. The Rac inhibitor significantly impairs androgen-induced migration in these cells. A mutant AR, deleted of the sequence interacting with FlnA, fails to mediate FAK activation and paxillin tyrosine phosphorylation in androgen-stimulated cells, further reinforcing the role of AR/FlnA interaction in androgen-mediated motility. Conclusions/Significance: The present report, for the first time, indicates that the extra nuclear AR/FlnA/integrin beta 1 complex is the key by which androgen activates signaling leading to cell migration. Assembly of this ternary complex may control organ development and prostate cancer metastasis

    Glucocorticoid and Estrogen Receptors Are Reduced in Mitochondria of Lung Epithelial Cells in Asthma

    Get PDF
    Mitochondrial glucocorticoid (mtGR) and estrogen (mtER) receptors participate in the coordination of the cell’s energy requirement and in the mitochondrial oxidative phosphorylation enzyme (OXPHOS) biosynthesis, affecting reactive oxygen species (ROS) generation and induction of apoptosis. Although activation of mtGR and mtER is known to trigger anti-inflammatory signals, little information exists on the presence of these receptors in lung tissue and their role in respiratory physiology and disease. Using a mouse model of allergic airway inflammation disease and applying confocal microscopy, subcellular fractionation, and Western blot analysis we showed mitochondrial localization of GRα and ERβ in lung tissue. Allergic airway inflammation caused reduction in mtGRα, mtERβ, and OXPHOS enzyme biosynthesis in lung cells mitochondria and particularly in bronchial epithelial cells mitochondria, which was accompanied by decrease in lung mitochondrial mass and induction of apoptosis. Confirmation and validation of the reduction of the mitochondrial receptors in lung epithelial cells in human asthma was achieved by analyzing autopsies from fatal asthma cases. The presence of the mitochondrial GRα and ERβ in lung tissue cells and especially their reduction in bronchial epithelial cells during allergic airway inflammation suggests a crucial role of these receptors in the regulation of mitochondrial function in asthma, implicating their involvement in the pathophysiology of the disease

    Hypoxia-Induced Invadopodia Formation Involves Activation of NHE-1 by the p90 Ribosomal S6 Kinase (p90RSK)

    Get PDF
    The hypoxic and acidic microenvironments in tumors are strongly associated with malignant progression and metastasis, and have thus become a central issue in tumor physiology and cancer treatment. Despite this, the molecular links between acidic pH- and hypoxia-mediated cell invasion/metastasis remain mostly unresolved. One of the mechanisms that tumor cells use for tissue invasion is the generation of invadopodia, which are actin-rich invasive plasma membrane protrusions that degrade the extracellular matrix. Here, we show that hypoxia stimulates the formation of invadopodia as well as the invasive ability of cancer cells. Inhibition or shRNA-based depletion of the Na+/H+ exchanger NHE-1, along with intracellular pH monitoring by live-cell imaging, revealed that invadopodia formation is associated with alterations in cellular pH homeostasis, an event that involves activation of the Na+/H+ exchange rate by NHE-1. Further characterization indicates that hypoxia triggered the activation of the p90 ribosomal S6 kinase (p90 RSK), which resulted in invadopodia formation and site-specific phosphorylation and activation of NHE-1. This study reveals an unsuspected role of p90RSK in tumor cell invasion and establishes p90RS kinase as a link between hypoxia and the acidic microenvironment of tumors

    Nerve growth factor induces neurite outgrowth of PC12 cells by promoting Gβγ-microtubule interaction

    Get PDF
    Background: Assembly and disassembly of microtubules (MTs) is critical for neurite outgrowth and differentiation. Evidence suggests that nerve growth factor (NGF) induces neurite outgrowth from PC12 cells by activating the receptor tyrosine kinase, TrkA. G protein-coupled receptors (GPCRs) as well as heterotrimeric G proteins are also involved in regulating neurite outgrowth. However, the possible connection between these pathways and how they might ultimately converge to regulate the assembly and organization of MTs during neurite outgrowth is not well understood. Results: Here, we report that Gβγ, an important component of the GPCR pathway, is critical for NGF-induced neuronal differentiation of PC12 cells. We have found that NGF promoted the interaction of Gβγ with MTs and stimulated MT assembly. While Gβγ-sequestering peptide GRK2i inhibited neurite formation, disrupted MTs, and induced neurite damage, the Gβγ activator mSIRK stimulated neurite outgrowth, which indicates the involvement of Gβγ in this process. Because we have shown earlier that prenylation and subsequent methylation/demethylation of γ subunits are required for the Gβγ-MTs interaction in vitro, small-molecule inhibitors (L-28 and L-23) targeting prenylated methylated protein methyl esterase (PMPMEase) were tested in the current study. We found that these inhibitors disrupted Gβγ and ΜΤ organization and affected cellular morphology and neurite outgrowth. In further support of a role of Gβγ-MT interaction in neuronal differentiation, it was observed that overexpression of Gβγ in PC12 cells induced neurite outgrowth in the absence of added NGF. Moreover, overexpressed Gβγ exhibited a pattern of association with MTs similar to that observed in NGF-differentiated cells. Conclusions: Altogether, our results demonstrate that βγ subunit of heterotrimeric G proteins play a critical role in neurite outgrowth and differentiation by interacting with MTs and modulating MT rearrangement. Electronic supplementary material The online version of this article (doi:10.1186/s12868-014-0132-4) contains supplementary material, which is available to authorized users
    • …
    corecore