2,022 research outputs found

    Spacecraft-plasma interaction codes: NASCAP/GEO, NASCAP/LEO, POLAR, DynaPAC, and EPSAT

    Get PDF
    Development of a computer code to simulate interactions between the surfaces of a geometrically complex spacecraft and the space plasma environment involves: (1) defining the relevant physical phenomena and formulating them in appropriate levels of approximation; (2) defining a representation for the 3-D space external to the spacecraft and a means for defining the spacecraft surface geometry and embedding it in the surrounding space; (3) packaging the code so that it is easy and practical to use, interpret, and present the results; and (4) validating the code by continual comparison with theoretical models, ground test data, and spaceflight experiments. The physical content, geometrical capabilities, and application of five S-CUBED developed spacecraft plasma interaction codes are discussed. The NASA Charging Analyzer Program/geosynchronous earth orbit (NASCAP/GEO) is used to illustrate the role of electrostatic barrier formation in daylight spacecraft charging. NASCAP/low Earth orbit (LEO) applications to the CHARGE-2 and Space Power Experiment Aboard Rockets (SPEAR)-1 rocket payloads are shown. DynaPAC application to the SPEAR-2 rocket payloads is described. Environment Power System Analysis Tool (EPSAT) is illustrated by application to Tethered Satellite System 1 (TSS-1), SPEAR-3, and Sundance. A detailed description and application of the Potentials of Large Objects in the Auroral Region (POLAR) Code are presented

    Additional application of the NASCAP code. Volume 1: NASCAP extension

    Get PDF
    The NASCAP computer program comprehensively analyzes problems of spacecraft charging. Using a fully three dimensional approach, it can accurately predict spacecraft potentials under a variety of conditions. Several changes were made to NASCAP, and a new code, NASCAP/LEO, was developed. In addition, detailed studies of several spacecraft-environmental interactions and of the SCATHA spacecraft were performed. The NASCAP/LEO program handles situations of relatively short Debye length encountered by large space structures or by any satellite in low earth orbit (LEO)

    Additional application of the NASCAP code. Volume 2: SEPS, ion thruster neutralization and electrostatic antenna model

    Get PDF
    The interactions of spacecraft systems with the surrounding plasma environment were studied analytically for three cases of current interest: calculating the impact of spacecraft generated plasmas on the main power system of a baseline solar electric propulsion stage (SEPS), modeling the physics of the neutralization of an ion thruster beam by a plasma bridge, and examining the physical and electrical effects of orbital ambient plasmas on the operation of an electrostatically controlled membrane mirror. In order to perform these studies, the NASA charging analyzer program (NASCAP) was used as well as several other computer models and analytical estimates. The main result of the SEPS study was to show how charge exchange ion expansion can create a conducting channel between the thrusters and the solar arrays. A fluid-like model was able to predict plasma potentials and temperatures measured near the main beam of an ion thruster and in the vicinity of a hollow cathode neutralizer. Power losses due to plasma currents were shown to be substantial for several proposed electrostatic antenna designs

    Analysis of the charging of the SCATHA (P78-2) satellite

    Get PDF
    The charging of a large object in polar Earth orbit was investigated in order to obtain a preliminary indication of the response of the shuttle orbiter to such an environment. Two NASCAP (NASA Charging Analyzer Program) models of SCATHA (Satellite Charging at High Altitudes) were used in simulations of charging events. The properties of the satellite's constituent materials were compiled and representations of the experimentally observed plasma spectra were constructed. Actual charging events, as well as those using test environments, were simulated. Numerical models for the simulation of particle emitters and detectors were used to analyze the operation of these devices onboard SCATHA. The effect of highly charged surface regions on the charging conductivity within a photosheath was used to interpret results from the onboard electric field experiment. Shadowing calculations were carried out for the satellite and a table of effective illuminated areas was compiled

    A Measurement of Water Vapour amid a Largely Quiescent Environment on Europa

    Get PDF
    Previous investigations proved the existence of local density enhancements in Europas atmosphere, advancing the idea of a possible origination from water plumes. These measurement strategies, however, were sensitive either to total absorption or atomic emissions, which limited the ability to assess the water content. Here we present direct searches for water vapour on Europa spanning dates from February 2016 to May 2017 with the Keck Observatory. Our global survey at infrared wavelengths resulted in non-detections on 16 out of 17 dates, with upper limits below the water abundances inferred from previous estimates. On one date (26 April 2016) we measured 2,095 658 tonnes of water vapour at Europas leading hemisphere. We suggest that the outgassing ls than previously estimated, with only rare localized events of stronger activity

    HST PanCET program: A Cloudy Atmosphere for the promising JWST target WASP-101b

    Get PDF
    We present results from the first observations of the Hubble Space Telescope (HST) Panchromatic Comparative Exoplanet Treasury (PanCET) program for WASP-101b, a highly inflated hot Jupiter and one of the community targets proposed for the James Webb Space Telescope (JWST) Early Release Science (ERS) program. From a single HST Wide Field Camera 3 (WFC3) observation, we find that the near-infrared transmission spectrum of WASP-101b contains no significant H2_2O absorption features and we rule out a clear atmosphere at 13{\sigma}. Therefore, WASP-101b is not an optimum target for a JWST ERS program aimed at observing strong molecular transmission features. We compare WASP-101b to the well studied and nearly identical hot Jupiter WASP-31b. These twin planets show similar temperature-pressure profiles and atmospheric features in the near-infrared. We suggest exoplanets in the same parameter space as WASP-101b and WASP-31b will also exhibit cloudy transmission spectral features. For future HST exoplanet studies, our analysis also suggests that a lower count limit needs to be exceeded per pixel on the detector in order to avoid unwanted instrumental systematics.Comment: 7 pages, 4 figures, 1 table, Accepted to ApJ

    Elemental abundances and minimum mass of heavy elements in the envelope of HD 189733b

    Full text link
    Oxygen (O) and carbon (C) have been inferred recently to be subsolar in abundance from spectra of the atmosphere of the transiting hot Jupiter HD 189733b. Yet, the mass and radius of the planet coupled with structure models indicate a strongly supersolar abundance of heavy elements in the interior of this object. Here we explore the discrepancy between the large amount of heavy elements suspected in the planet's interior and the paucity of volatiles measured in its atmosphere. We describe the formation sequence of the icy planetesimals formed beyond the snow line of the protoplanetary disk and calculate the composition of ices ultimately accreted in the envelope of HD 189733b on its migration pathway. This allows us to reproduce the observed volatile abundances by adjusting the mass of ices vaporized in the envelope. The predicted elemental mixing ratios should be 0.15--0.3 times solar in the envelope of HD 189733b if they are fitted to the recent O and C determinations. However, our fit to the minimum mass of heavy elements predicted by internal structure models gives elemental abundances that are 1.2--2.4 times oversolar in the envelope of HD189733b. We propose that the most likely cause of this discrepancy is irradiation from the central star leading to development of a radiative zone in the planet's outer envelope which would induce gravitational settling of elements. Hence, all strongly irradiated extrasolar planets should present subsolar abundances of volatiles. We finally predict that the abundances of nitrogen (N), sulfur (S) and phosphorus (P) are of \sim 2.8×1052.8 \times 10^{-5}, 5.3×1065.3 \times 10^{-6} and 1.8×1071.8 \times 10^{-7} relative to H2_2, respectively in the atmosphere of HD 189733b.Comment: Accepted for publication in Astronomy & Astrophysic

    Particle Creation If a Cosmic String Snaps

    Get PDF
    We calculate the Bogolubov coefficients for a metric which describes the snapping of a cosmic string. If we insist on a matching condition for all times {\it and} a particle interpretation, we find no particle creation.Comment: 10 pages, MRC.PH.17/9
    corecore