289 research outputs found

    Metformin induces apoptosis and alters cellular responses to oxidative stress in Ht29 colon cancer cells: Preliminary findings

    Get PDF
    Accumulating evidence suggests that metformin, used as an antidiabetic drug, possesses anti-cancer properties. Metformin reduced the incidence and growth of experimental tumors in vivo. In a randomized clinical trial among nondiabetic patients, metformin treatment significantly decreased the number of aberrant crypt foci compared to the untreated group with a follow-up of 1 month. In our study, HT29 cells were treated with graded concentrations of metformin, 10 mM/25 mM/50 mM for 24/48 h. We performed immunofluorescence experiments by means of confocal microscopy and western blot analysis to evaluate a panel of factors involved in apoptotic/autophagic processes and oxidative stress response. Moreover, HT29 cells treated with metformin were analyzed by a flow cytometry assay to detect the cell apoptotic rate. The results demonstrate that metformin exerts growth inhibitory effects on cultured HT29 cells by increasing both apoptosis and autophagy; moreover, it affects the survival of cultured cells inhibiting the transcriptional activation of Nuclear factor E2-related factor 2 (NRF-2) and nuclear factor-kappa B (NF-\u3baB). The effects of metformin on HT29 cells were dose- and time-dependent. These results are very intriguing since metformin is emerging as a multi-faceted drug: It has a good safety profile and is associated with low cost and might be a promising candidate for the prevention or the treatment of colorectal cancer

    De novo expression of uncoupling protein 3 is associated to enhanced mitochondrial thioesterase-1 expression and fatty acid metabolism in liver of fenofibrate-treated rats

    Get PDF
    AbstractUncoupling protein 3 (UCP3) is a member of the mitochondrial carrier superfamily, preferentially expressed in skeletal muscle. Its function is not fully understood and it is debated whether it uncouples oxidative phosphorylation as does UCP1 in brown adipose tissue. Recent evidences suggest a role for UCP3 in the flux of fatty acids in and out mitochondria and their utilization in concert with mitochondrial thioesterase-1 (MTE-1). In fact, mice overexpressing muscle UCP3 also show high levels of MTE-1. Fenofibrate is a hypolipidemic drug that prevents body weight gain in diet-induced obese rats and enhances lipid metabolism by activating peroxisome proliferator-activated receptors (PPARs). Because fatty acids and fenofibrate stimulate PPARs and in turn UCP3, we investigated whether UCP3 expression might be induced ‘de novo’ in situations of increased hepatic mitochondrial fatty acid utilization caused by a combined effect of a high-fat diet and fenofibrate treatment. We also investigated whether Mte-1 expression and ÎČ-oxidation were affected. We show here that Ucp3 is induced in liver of fenofibrate-treated rats at the mRNA and protein level. Expression was restricted to hepatocytes and was unevenly distributed in the liver. No increase in cell proliferation, inflammatory or fibrotic responses was found. Mte-1 expression and mitochondrial ÎČ-oxidation were upregulated. Thus, Ucp3 can be transactivated in tissues where it is normally silent and fenofibrate can attain this effect in liver. The data demonstrate that UCP3 is involved in fatty acid utilization and support the notion that UCP3 and MTE-1 are linked within the same metabolic pathway

    Ataxia with oculomotor apraxia type 2: a clinical, pathologic, and genetic study

    Get PDF
    BACKGROUND: Ataxia with oculomotor apraxia type 2 (AOA2) is characterized by onset between age 10 and 22 years, cerebellar atrophy, peripheral neuropathy, oculomotor apraxia (OMA), and elevated serum alpha-fetoprotein (AFP) levels. Recessive mutations in SETX have been described in AOA2 patients. OBJECTIVE: To describe the clinical features of AOA2 and to identify the SETX mutations in 10 patients from four Italian families. METHODS: The patients underwent clinical examination, routine laboratory tests, nerve conduction studies, sural nerve biopsy, and brain MRI. All were screened for SETX mutations. RESULTS: All the patients had cerebellar features, including limb and truncal ataxia, and slurred speech. OMA was observed in two patients, extrapyramidal symptoms in two, and mental impairment in three. High serum AFP levels, motor and sensory axonal neuropathy, and marked cerebellar atrophy on MRI were detected in all the patients who underwent these examinations. Sural nerve biopsy revealed a severe depletion of large myelinated fibers in one patient, and both large and small myelinated fibers in another. Postmortem findings are also reported in one of the patients. Four different homozygous SETX mutations were found (a large-scale deletion, a missense change, a single-base deletion, and a splice-site mutation). CONCLUSIONS: The clinical phenotype of oculomotor apraxia type 2 is fairly homogeneous, showing only subtle intrafamilial variability. OMA is an inconstant finding. The identification of new mutations expands the array of SETX variants, and the finding of a missense change outside the helicase domain suggests the existence of at least one more functional region in the N-terminus of senataxin

    JAK3/STAT5/6 Pathway Alterations Are Associated with Immune Deviation in CD8+ T Cells in Renal Cell Carcinoma Patients

    Get PDF
    To investigate the molecular mechanisms underlying altered T cell response in renal cell carcinoma (RCC) patients, we compared autologous and allogeneic CD8+ T cell responses against RCC line from RCC patients and their HLA-matched donors, using mixed lymphocyte/tumor cell cultures (MLTCs). In addition, we analyzed the expression of molecules associated with cell cycle regulation. Autologous MLTC responder CD8+ T cells showed cytotoxic activity against RCC cell lines; however the analysis of the distribution of CD8+ T-cell subsets revealed that allogenic counterparts mediate superior antitumor efficacy. In RCC patients, a decreased proliferative response to tumor, associated with defects in JAK3/STAT5/6 expression that led to increased p27KIP1 expression and alterations in the cell cycle, was observed. These data define a molecular pathway involved in cell cycle regulation that is associated with the dysfunction of tumor-specific CD8+ effector cells. If validated, this may define a therapeutic target in the setting of patients with RCC

    Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer's disease

    Get PDF
    Memory loss is one of the first symptoms of typical Alzheimer's disease (AD), for which there are no effective therapies available. The precuneus (PC) has been recently emphasized as a key area for the memory impairment observed in early AD, likely due to disconnection mechanisms within large-scale networks such as the default mode network (DMN). Using a multimodal approach we investigated in a two-week, randomized, sham-controlled, double-blinded trial the effects of high-frequency repetitive transcranial magnetic stimulation (rTMS) of the PC on cognition, as measured by the Alzheimer Disease Cooperative Study Preclinical Alzheimer Cognitive Composite in 14 patients with early AD (7 females). TMS combined with electroencephalography (TMS-EEG) was used to detect changes in brain connectivity. We found that rTMS of the PC induced a selective improvement in episodic memory, but not in other cognitive domains. Analysis of TMS-EEG signal revealed an increase of neural activity in patients' PC, an enhancement of brain oscillations in the beta band and a modification of functional connections between the PC and medial frontal areas within the DMN. Our findings show that high-frequency rTMS of the PC is a promising, non-invasive treatment for memory dysfunction in patients at early stages of AD. This clinical improvement is accompanied by modulation of brain connectivity, consistently with the pathophysiological model of brain disconnection in AD

    The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito anopheles gambiae

    Get PDF
    Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E) transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO) protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male–female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria

    A DROP-IN beta probe for robot-assisted 68Ga-PSMA radioguided surgery: first ex vivo technology evaluation using prostate cancer specimens

    Get PDF
    Background: Recently, a flexible DROP-IN gamma-probe was introduced for robot-assisted radioguided surgery, using traditional low-energy SPECT-isotopes. In parallel, a novel approach to achieve sensitive radioguidance using beta-emitting PET isotopes has been proposed. Integration of these two concepts would allow to exploit the use of PET tracers during robot-assisted tumor-receptor-targeted. In this study, we have engineered and validated the performance of a novel DROP-IN beta particle (DROP-INÎČ) detector. Methods: Seven prostate cancer patients with PSMA-PET positive tumors received an additional intraoperative injection of ~ 70 MBq 68Ga-PSMA-11, followed by robot-assisted prostatectomy and extended pelvic lymph node dissection. The surgical specimens from these procedures were used to validate the performance of our DROP-INÎČ probe prototype, which merged a scintillating detector with a housing optimized for a 12-mm trocar and prograsp instruments. Results: After optimization of the detector and probe housing via Monte Carlo simulations, the resulting DROP-INÎČ probe prototype was tested in a robotic setting. In the ex vivo setting, the probe—positioned by the robot—was able to identify 68Ga-PSMA-11 containing hot-spots in the surgical specimens: signal-to-background (S/B) was > 5 when pathology confirmed that the tumor was located < 1 mm below the specimen surface. 68Ga-PSMA-11 containing (and PET positive) lymph nodes, as found in two patients, were also confirmed with the DROP-INÎČ probe (S/B > 3). The rotational freedom of the DROP-IN design and the ability to manipulate the probe with the prograsp tool allowed the surgeon to perform autonomous beta-tracing. Conclusions: This study demonstrates the feasibility of beta-radioguided surgery in a robotic context by means of a DROP-INÎČ detector. When translated to an in vivo setting in the future, this technique could provide a valuable tool in detecting tumor remnants on the prostate surface and in confirmation of PSMA-PET positive lymph nodes. © 2020, The Author(s)

    Molecular characterization and evolution of a gene family encoding male-specific reproductive proteins in the African malaria vector Anopheles gambiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During copulation, the major Afro-tropical malaria vector <it>Anopheles gambiae </it>s.s. transfers male accessory gland (MAG) proteins to females as a solid mass (i.e. the "mating plug"). These proteins are postulated to function as important modulators of female post-mating responses. To understand the role of selective forces underlying the evolution of these proteins in the <it>A. gambiae </it>complex, we carried out an evolutionary analysis of gene sequence and expression divergence on a pair of paralog genes called <it>AgAcp34A-1 </it>and <it>AgAcp34A-2</it>. These encode MAG-specific proteins which, based on homology with <it>Drosophila</it>, have been hypothesized to play a role in sperm viability and function.</p> <p>Results</p> <p>Genetic analysis of 6 species of the <it>A. gambiae </it>complex revealed the existence of a third paralog (68-78% of identity), that we named <it>AgAcp34A-3</it>. FISH assays showed that this gene maps in the same division (34A) of chromosome-3R as the other two paralogs. In particular, immuno-fluorescence assays targeting the C-terminals of <it>AgAcp34A-2 </it>and <it>AgAcp34A-3 </it>revealed that these two proteins are localized in the posterior part of the MAG and concentrated at the apical portion of the mating plug. When transferred to females, this part of the plug lies in proximity to the duct connecting the spermatheca to the uterus, suggesting a potential role for these proteins in regulating sperm motility. <it>AgAcp34A-3 </it>is more polymorphic than the other two paralogs, possibly because of relaxation of purifying selection. Since both unequal crossing-over and gene conversion likely homogenized the members of this gene family, the interpretation of the evolutionary patterns is not straightforward. Although several haplotypes of the three paralogs are shared by most <it>A. gambiae </it>s.l. species, some fixed species-specific replacements (mainly placed in the N- and C-terminal portions of the secreted peptides) were also observed, suggesting some lineage-specific adaptation.</p> <p>Conclusions</p> <p>Progress in understanding the signaling cascade in the <it>A. gambiae </it>reproductive pathway will elucidate the interaction of this MAG-specific protein family with their female counterparts. This knowledge will allow a better evaluation of the relative importance of genes involved in the reproductive isolation and fertility of <it>A. gambiae </it>species and could help the interpretation of the observed evolutionary patterns.</p

    Real time contrast enhanced ultrasonography in detection of liver metastases from gastrointestinal cancer

    Get PDF
    Background: Contrast enhanced ultrasound (CEUS) is an imaging technique which appeared on the market around the year 2000 and proposed for the detection of liver metastases in gastrointestinal cancer patients, a setting in which accurate staging plays a significant role in the choice of treatment. Methods: A total of 109 patients with colorectal (n = 92)or gastric cancer prospectively underwent computed tomography (CT) scan and conventional US evaluation followed by real time CEUS. A diagnosis of metastases was made by CT or, for lesions not visibile at CT, the diagnosis was achieved by histopathology or by a malignant behavior during follow-up. Results: Of 109 patients, 65 were found to have metastases at presentation. CEUS improved sensitivity in metastatic livers from 76.9% of patients (US) to 95.4% (p < 0.01), while CT scan reached 90.8% (p = n.s. vs CEUS, p < 0.01 vs US). CEUS and CT were more sensitive than US also for detection of single lesions (87 with US, 122 with CEUS, 113 with CT). In 15 patients (13.8%), CEUS revealed more metastases than CT, while CT revealed more metastases than CEUS in 9 patients (8.2%) (p = n.s.). Conclusion: CEUS is more sensitive than conventional US in the detection of liver metastases and could be usefully employed in the staging of patients with gastrointestinal cancer. Findings at CEUS and CT appear to be complementary in achieving maximum sensitivity. © 2007 Piscaglia et al; licensee BioMed Central Ltd
    • 

    corecore