13 research outputs found
Plasmodium falciparum spermidine synthase inhibition results in unique perturbation-specific effects observed on transcript, protein and metabolite levels
<p>Abstract</p> <p>Background</p> <p><it>Plasmodium falciparum</it>, the causative agent of severe human malaria, has evolved to become resistant to previously successful antimalarial chemotherapies, most notably chloroquine and the antifolates. The prevalence of resistant strains has necessitated the discovery and development of new chemical entities with novel modes-of-action. Although much effort has been invested in the creation of analogues based on existing drugs and the screening of chemical and natural compound libraries, a crucial shortcoming in current Plasmodial drug discovery efforts remains the lack of an extensive set of novel, validated drug targets. A requirement of these targets (or the pathways in which they function) is that they prove essential for parasite survival. The polyamine biosynthetic pathway, responsible for the metabolism of highly abundant amines crucial for parasite growth, proliferation and differentiation, is currently under investigation as an antimalarial target. Chemotherapeutic strategies targeting this pathway have been successfully utilized for the treatment of Trypanosomes causing West African sleeping sickness. In order to further evaluate polyamine depletion as possible antimalarial intervention, the consequences of inhibiting <it>P. falciparum </it>spermidine synthase (PfSpdSyn) were examined on a morphological, transcriptomic, proteomic and metabolic level.</p> <p>Results</p> <p>Morphological analysis of <it>P. falciparum </it>3D7 following application of the PfSpdSyn inhibitor cyclohexylamine confirmed that parasite development was completely arrested at the early trophozoite stage. This is in contrast to untreated parasites which progressed to late trophozoites at comparable time points. Global gene expression analyses confirmed a transcriptional arrest in the parasite. Several of the differentially expressed genes mapped to the polyamine biosynthetic and associated metabolic pathways. Differential expression of corresponding parasite proteins involved in polyamine biosynthesis was also observed. Most notably, uridine phosphorylase, adenosine deaminase, lysine decarboxylase (LDC) and S-adenosylmethionine synthetase were differentially expressed at the transcript and/or protein level. Several genes in associated metabolic pathways (purine metabolism and various methyltransferases) were also affected. The specific nature of the perturbation was additionally reflected by changes in polyamine metabolite levels.</p> <p>Conclusions</p> <p>This study details the malaria parasite's response to PfSpdSyn inhibition on the transcriptomic, proteomic and metabolic levels. The results corroborate and significantly expand previous functional genomics studies relating to polyamine depletion in this parasite. Moreover, they confirm the role of transcriptional regulation in <it>P. falciparum</it>, particularly in this pathway. The findings promote this essential pathway as a target for antimalarial chemotherapeutic intervention strategies.</p
Thermo-responsive non-woven scaffolds for "smart" 3D cell culture
The thermo-responsive polymer poly(N-isopropylacrylamide) has received widespread
attention for its in vitro application in the non-invasive, non-destructive release of adherent
cells on two dimensional surfaces. In this study, 3D non-woven scaffolds fabricated from
poly(propylene) (PP), poly(ethylene terephthalate) (PET) and nylon that had been grafted
with PNIPAAm were tested for their ability to support the proliferation and subsequent
thermal release of HC04 and HepG2 hepatocytes. Hepatocyte viability and proliferation was
estimated using the Alamar Blue assay and Hoechst 33258 total DNA quantification. The
assays revealed that the pure and grafted non-woven scaffolds maintained the hepatocytes
within the matrix and promoted 3D proliferation comparable to that of the commercially available AlgimatrixTM alginate scaffold. Albumin production and selected cytochrome P450
genes expression was found to be superior in cells growing on pure and grafted non-woven
PP scaffolds as compared to cells grown as a 2D monolayer. Two scaffolds, namely, PP-g-
PNIPAAm-A and PP-g-PNIPAAm-B were identified as having far superior thermal release
capabilities; releasing the majority of the cells from the matrices within 2 h. This is the first
report for the development of 3D non-woven, thermo-responsive scaffolds able to release
cells from the matrix without the use of any enzymatic assistance or scaffold degradation.The Council for Scientific and Industrial
Researchhttp://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-0290hb2016Biochemistr
In vitro anti-plasmodial activity of Dicoma anomala subsp. gerrardii (Asteraceae): identification of its main active constituent, structure-activity relationship studies and gene expression profiling
<p>Abstract</p> <p>Background</p> <p>Anti-malarial drug resistance threatens to undermine efforts to eliminate this deadly disease. The resulting omnipresent requirement for drugs with novel modes of action prompted a national consortium initiative to discover new anti-plasmodial agents from South African medicinal plants. One of the plants selected for investigation was <it>Dicoma anomala </it>subsp. <it>gerrardii</it>, based on its ethnomedicinal profile.</p> <p>Methods</p> <p>Standard phytochemical analysis techniques, including solvent-solvent extraction, thin-layer- and column chromatography, were used to isolate the main active constituent of <it>Dicoma anomala </it>subsp. <it>gerrardii</it>. The crystallized pure compound was identified using nuclear magnetic resonance spectroscopy, mass spectrometry and X-ray crystallography. The compound was tested <it>in vitro </it>on <it>Plasmodium falciparum </it>cultures using the parasite lactate dehydrogenase (pLDH) assay and was found to have anti-malarial activity. To determine the functional groups responsible for the activity, a small collection of synthetic analogues was generated - the aim being to vary features proposed as likely to be related to the anti-malarial activity and to quantify the effect of the modifications <it>in vitro </it>using the pLDH assay. The effects of the pure compound on the <it>P. falciparum </it>transcriptome were subsequently investigated by treating ring-stage parasites (alongside untreated controls), followed by oligonucleotide microarray- and data analysis.</p> <p>Results</p> <p>The main active constituent was identified as dehydrobrachylaenolide, a eudesmanolide-type sesquiterpene lactone. The compound demonstrated an <it>in vitro </it>IC<sub>50 </sub>of 1.865 μM against a chloroquine-sensitive strain (D10) of <it>P. falciparum</it>. Synthetic analogues of the compound confirmed an absolute requirement that the α-methylene lactone be present in the eudesmanolide before significant anti-malarial activity was observed. This feature is absent in the artemisinins and suggests a different mode of action. Microarray data analysis identified 572 unique genes that were differentially expressed as a result of the treatment and gene ontology analysis identified various biological processes and molecular functions that were significantly affected. Comparison of the dehydrobrachylaenolide treatment transcriptional dataset with a published artesunate (also a sesquiterpene lactone) dataset revealed little overlap. These results strengthen the notion that the isolated compound and the artemisinins have differentiated modes of action.</p> <p>Conclusions</p> <p>The novel mode of action of dehydrobrachylaenolide, detected during these studies, will play an ongoing role in advancing anti-plasmodial drug discovery efforts.</p
UCT943, a next generation Plasmodium falciparum PI4K inhibitor preclinical candidate for the treatment of malaria
The 2-aminopyridine MMV048 was the first drug candidate inhibiting; Plasmodium; phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant; Plasmodium falciparum; and; Plasmodium vivax; clinical isolates. Excellent; in vitro; antiplasmodial activity translated into high efficacy in; Plasmodium berghei; and humanized; P. falciparum; NOD-; scid IL-2R; γ; null; mouse models. The high passive permeability and high aqueous solubility of UCT943, combined with low to moderate; in vivo; intrinsic clearance, resulted in sustained exposure and high bioavailability in preclinical species. In addition, the predicted human dose for a curative single administration using monkey and dog pharmacokinetics was low, ranging from 50 to 80 mg. As a next-generation; Plasmodium; PI4K inhibitor, UCT943, based on the combined preclinical data, has the potential to form part of a single-exposure radical cure and prophylaxis (SERCaP) to treat, prevent, and block the transmission of malaria
On Cartan matrices with two parameters (Cohomology theory of finite groups and related topics)
A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34%) of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments and medicinal chemistry programs. The data for all of these assays are presented and analyzed to show how outstanding leads for many indications can be selected. These results reveal the immense potential for translating the dispersed expertise in biological assays involving human pathogens into drug discovery starting points, by providing open access to new families of molecules, and emphasize how a small additional investment made to help acquire and distribute compounds, and sharing the data, can catalyze drug discovery for dozens of different indications. Another lesson is that when multiple screens from different groups are run on the same library, results can be integrated quickly to select the most valuable starting points for subsequent medicinal chemistry efforts