9 research outputs found

    The annual energy yield of mono- and bifacial silicon heterojunction solar modules with high-index dielectric nanodisk arrays as anti-reflective and light trapping structures

    Get PDF
    While various nanophotonic structures applicable to relatively thin crystalline silicon-based solar cells were proposed to ensure effective light in-coupling and light trapping in the absorber, it is of great importance to evaluate their performance on the solar module level under realistic irradiation conditions. Here, we analyze the annual energy yield of relatively thin heterojunction (HJT) solar module architectures when optimized anti-reflective and light trapping titanium dioxide (TiO2_2) nanodisk square arrays are applied on the front and rear cell interfaces. Our numerical study shows that upon reducing crystalline silicon (c-Si) wafer thickness, the relative increase of the annual energy yield can go up to 11.0 %rel_\text{rel} and 43.0 %rel_\text{rel} for mono- and bifacial solar modules, respectively, when compared to the reference modules with flat optimized anti-reflective coatings of HJT solar cells.Comment: 24 pages, 7 figure

    Light Management: A Key Concept in High-Efficiency Perovskite/Silicon Tandem Photovoltaics

    No full text
    The remarkable recent progress in perovskite photovoltaics affords a novel opportunity to advance the power conversion efficiency of market-dominating crystalline silicon (c-Si) solar cells. A severe limiting factor in the development of perovskite/c-Si tandems to date has been their inferior light-harvesting ability compared to single-junction c-Si solar cells, but recent innovations have made impressive headway on this front. Here, we provide a quantitative perspective on future steps to advance perovskite/c-Si tandem photovoltaics from a light-management point of view, addressing key challenges and available strategies relevant to both the 2-terminal and 4-terminal perovskite/c-Si tandem architectures. In particular, we discuss the challenge of achieving low optical reflection in 2-terminal cells, optical shortcomings in state-of-the-art devices, the impact of transparent electrode performance, and a variety of factors which influence the optimal bandgap for perovskite top-cells. Focused attention in each of these areas will be required to make the most of the tandem opportunity.Australian Renewable Energy Agency; Australian Research Council; Bundesministerium für Bildung und Forschung (PRINTPERO); the Initiating and Networking funding of the Helmholtz Association; the European Union’s Horizon2020 program (ACTPHAST); Karlsruhe School of Optics & Photonics (KSOP); Swiss National Science Foundation via NRP70 Energy Turnaround PV2050 and Swiss National Science Foundation Bridge (176552) projects

    Theia: Faint objects in motion or the new astrometry frontier

    No full text
    In the context of the ESA M5 (medium mission) call we proposed a new satellite mission, Theia, based on relative astrometry and extreme precision to study the motion of very faint objects in the Universe. Theia is primarily designed to study the local dark matter properties, the existence of Earth-like exoplanets in our nearest star systems and the physics of compact objects. Furthermore, about 15 %\% of the mission time was dedicated to an open observatory for the wider community to propose complementary science cases. With its unique metrology system and "point and stare" strategy, Theia's precision would have reached the sub micro-arcsecond level. This is about 1000 times better than ESA/Gaia's accuracy for the brightest objects and represents a factor 10-30 improvement for the faintest stars (depending on the exact observational program). In the version submitted to ESA, we proposed an optical (350-1000nm) on-axis TMA telescope. Due to ESA Technology readiness level, the camera's focal plane would have been made of CCD detectors but we anticipated an upgrade with CMOS detectors. Photometric measurements would have been performed during slew time and stabilisation phases needed for reaching the required astrometric precision

    Theia: Faint objects in motion or the new astrometry frontier

    No full text
    In the context of the ESA M5 (medium mission) call we proposed a new satellite mission, Theia, based on relative astrometry and extreme precision to study the motion of very faint objects in the Universe. Theia is primarily designed to study the local dark matter properties, the existence of Earth-like exoplanets in our nearest star systems and the physics of compact objects. Furthermore, about 15 %\% of the mission time was dedicated to an open observatory for the wider community to propose complementary science cases. With its unique metrology system and "point and stare" strategy, Theia's precision would have reached the sub micro-arcsecond level. This is about 1000 times better than ESA/Gaia's accuracy for the brightest objects and represents a factor 10-30 improvement for the faintest stars (depending on the exact observational program). In the version submitted to ESA, we proposed an optical (350-1000nm) on-axis TMA telescope. Due to ESA Technology readiness level, the camera's focal plane would have been made of CCD detectors but we anticipated an upgrade with CMOS detectors. Photometric measurements would have been performed during slew time and stabilisation phases needed for reaching the required astrometric precision
    corecore