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Abstract: While various nanophotonic structures applicable to relatively thin crystalline silicon-
based solar cells were proposed to ensure effective light in-coupling and light trapping in the
absorber, it is of great importance to evaluate their performance on the solar module level
under realistic irradiation conditions. Here, we analyze the annual energy yield of relatively
thin (crystalline silicon (c-Si) wafer thickness between 5 µm and 80 µm) heterojunction (HJT)
solar module architectures when optimized anti-reflective and light trapping titanium dioxide
(TiO2) nanodisk square arrays are applied on the front and rear cell interfaces, respectively. Our
numerical study shows that upon reducing c-Si wafer thickness down to 5 µm, the relative increase
of the annual energy yield can go up to 23.3 %rel and 43.0 %rel for mono- and bifacial solar
modules, respectively, when compared to the reference modules with flat optimized anti-reflective
coatings of HJT solar cells.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Reducing optical losses is of paramount importance for further developing photovoltaic (PV)
devices. Even though the record efficiency for the silicon-based cells is quite close to the
theoretical limit [1], further reduction of the optical losses can allow the market-dominating
single-junction c-Si solar cells to reach their efficiency limit [2,3]. While a common approach
involves employing various uniform anti-reflective coatings (ARCs) combined with the chemical
texturing of the c-Si wafer, resulting in the formation of micron-sized pyramidal features [4], in
some cases, alternative approaches to suppress the optical losses are of interest. Even though
the small pyramidal textures for thin c-Si wafers are actively researched [5–7], in industrial
solar cells, the micron-sized textures are realized on relatively thick c-Si wafers, with a current
standard of 160 µm. However, a transition to the wafer thickness below the standard value and
switching to the foil-like thinner c-Si can allow for lower material consumption. This can reduce
the manufacturing cost and accelerate the expansion of PV manufacturing [8] to keep up with
the estimates for the global installed PV capacity [9]. However, for such thin devices, the use of
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micron-sized textures becomes very challenging due to c-Si wafer handling issues, and novel
approaches have to be identified to reduce the optical losses.

In response to this need, various nanophotonic concepts [10] applicable to c-Si-based solar
cell stacks were proposed to enhance light harvesting through improved light in-coupling on the
front surface. Examples of possible solutions include plasmonic structures [11–13], periodically
arranged silicon [14,15] and dielectric [16–18] nanoscatterers, and biomimetic structures [19].
Moreover, double-sided AR and light trapping (LT) nanostructure gratings introduced at the
front and rear sides of the solar cells were also suggested. For example, such a concept was
investigated for thin-film c-Si [20] and thin-film hydrogenated nanocrystalline silicon (nc-Si:H)
[21] solar cells.

Nevertheless, while a plethora of nanophotonic structures was proposed and investigated in
recent years, it is of paramount importance to analyze their performance in a full solar module
architecture under realistic irradiation conditions. For example, such analysis was performed
for different solar module architectures where sufficient optical properties were achieved using
strategies involving textured interfaces and/or flat ARCs [22–27]. Since the solar cell is not
always illuminated with light at normal incidence in the realistic scenario, one has to go beyond
the analysis of the ability of the structure to enhance the short-circuit current density under the
standard test conditions and ensure that the proposed AR and/or LT nanostructure designs are
robust concerning irradiation impinging on the solar module at increasing angles of incidence.
Additionally, the absorption of photons by the solar cell absorber depends on the sun’s position.
It is influenced by the cloud coverage effect on irradiation received by the module and the module
orientation. For solar cells with double-sided photonic nanostructures, it is also appealing to
consider and assess the possible power output of the solar modules with nanostructured solar cells
in the case of a bifacial module architecture. This module configuration allows for harvesting
the photons that can be absorbed when the sunlight either hits the module from its back or is
reflected from the ground and can be absorbed in the solar cell.

Here, we study the energy yield of relatively thin wafer-based c-Si solar modules, for which
the solar cell stack is coated with double-sided nanostructure gratings. Suitably designed square
arrays of dielectric high-index TiO2 nanodisks are used as AR and LT photonic nanostructures.
Their geometrical parameters are subject to optimization. Results are compared to the modules
containing more traditional planar thin-film anti-reflective layers. We consider mono- and
bifacial modules and introduce the nanodisk arrays on both the front and rear surfaces of the
c-Si-based heterojunction (HJT) solar cell for either module configuration. Additionally, we
compare the modules with AR and LT nanostructures with the state-of-the-art modules for which
the c-Si wafers have random pyramidal texture. The nanodisk arrays are initially optimized
at normal incident light by full-wave optical simulations concerning the short-circuit current
density associated with the reflected portion of the light (details in Sec. 2.4). The optimal design
of these nanodisk arrays depends on whether they are employed on the front side, where they
serve the purpose of suppressing reflectance, or on the rear side, where they facilitate the light
trapping. Therefore, when optimizing the nanodisk arrays, different designs are found depending
on the mechanisms through which they contribute to enhancing absorptance in the c-Si wafer. To
estimate the annual energy yield (EY) of the solar module architectures with nanodisk arrays, the
optical response from the optimized nanodisk arrays when placed on the front and rear solar cell
contact layers is simulated using full-wave optical tools depending on the angle of incidence.
This is the primary information fueled afterward into the EY modeling framework. The annual
EY is assessed for monofacial and bifacial module architectures with and without TiO2 nanodisk
arrays at locations with different climate conditions. The influence of albedo radiation is also
considered, which is especially relevant to consider in bifacial module configuration [28]. Our
key contribution is to show that for the wafer-based c-Si cells with thicknesses for which standard
chemical texturing becomes impractical, and alternative AR and LT structures are of interest, the
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nanodisk arrays that we suggest outperform to a considerable extent the traditional design that
relies only on the planar ARCs and approach the performance of the random pyramidal textures.
In passing, we note that the design of the nanodisk arrays for front and rear solar cell contacts
proposed here is exemplary, and it is neither restricted to a particular solar cell stack nor the
materials used.

2. Module architectures and numerical methods

2.1. Investigated module architectures and material properties

The six different architectures discussed in this contribution are schematically depicted in Fig. 1.
The extensive annual EY calculations were performed for two reference monofacial and bifacial
module configurations with standard flat ARC (architectures (a) and (c)) and two designs with AR
and LT nanodisk arrays introduced on top of the front and rear ITO contact layers (architectures
(b) and (d)), respectively. We varied the c-Si absorber thickness of all architectures between 5µm,
and 80 µm, which is a typical thickness range between thin PV and conventional wafer-based
c-Si PV. Additionally, we compared the performance of the modules with nanodisks to the
performance of the state-of-the-art modules with random pyramidal texture (architectures (e) and
(f)) for a few c-Si wafer thicknesses.

Fig. 1. Schematic representation of the six solar module architectures discussed in this
paper: (a) Monofacial reference module with an optimized transparent conductive ITO layer
on the front, serving as both ARC and front contact, and perfectly reflective backsheet in the
rear of the module. Front ITO layer is preceded with window glass and encapsulation (EVA)
layers covered with an ARC. The rear ITO layer is followed by the EVA layer identical to
the one on the front of the architecture. For all considered solar module configurations, the
window layers are identical. (b) Monofacial module with optimized AR and LT nanodisk
arrays on top of the front and rear ITO contacts, respectively. The rear EVA layer is followed
by the backsheet as in the reference architecture. (c) Bifacial reference module with the
standard flat ARC with symmetric window layers on both sides of the solar module. (d)
Bifacial module with optimized AR and LT nanodisk arrays on top of the front and rear ITO
contacts with symmetric window layers on both sides of the solar module, respectively. (e)
State-of-the-art monofacial module architecture with a chemically textured c-Si wafer. (f)
State-of-the-art bifacial module architecture with a chemically textured c-Si wafer.
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In the case of flat reference c-Si HJT solar cell stacks, the front hydrogenated amorphous
silicon (a-Si:H) (passivation intrinsic and n+ doped, the thickness can be found in [29]) and
conducting ITO (75 nm) layers were considered. For the rear side of the HJT solar cell stack, the
a-Si:H (passivation intrinsic and p+ doped) layer was slightly thicker than the a-Si:H layer on the
front, while the ITO layer was thinner than its counterpart on the front side.

The configurations (b) and (d) containing optimized AR nanodisk array had a reduced front
ITO thickness of 10 nm with TiO2 nanodisks arranged in a square lattice of 320 nm pitch, with
individual nanodisk having a radius of 125 nm and a height of 90 nm. The design of the AR
nanodisk array was based on the previous work on helicity preserving TiO2 nanodisk array for the
front interface of a c-Si HJT solar cell, where efficient and broadband backscattering suppression
was achieved due to the ability of the system to suppress cross-talk between opposite helicities
(handednesses) of the electromagnetic field upon light-matter interaction [29]. The configurations
(b) and (d) also had the optimized LT TiO2 nanodisk square array (individual nanodisk with a
radius of 215 nm and height of 395 nm, 565 nm pitch) while the rear ITO thickness was the same
as for the reference architectures (a) and (c). These values for the geometrical parameters are the
results of an optimization of the AR and LT nanodisk arrays discussed in Sec. 2.4.

For both monofacial and bifacial architectures, we considered the bifacial solar cells with
identical contacting metallic grids on both sides of the cells. We note that the effect of the contacts
on the optical performance of the solar modules was neglected. To mimic the performance of the
perfectly reflective backsheet in the monofacial module architectures, we considered the 200
nm thick silver layer at the rear side of such modules. The window module layers comprise
encapsulating EVA (400 µm) and glass (4 mm) with thin-film anti-reflective MgF2 coating (130
nm). The modules in the bifacial configuration were considered to have the same window layers
as the ones introduced on the front side. In such a configuration, the module can absorb the light
that is incident on both its front and rear sides. Additionally, one can harvest albedo radiation
since the transmitted portion of the light is reflected from the ground, and thus, can be reabsorbed
in the silicon, significantly boosting the annual EY. When a bifacial solar module is tilted, albedo
radiation can also impact the annual EY due to the light reflected from the ground and incident on
the front of the module. We note that when a monofacial solar module is tilted, albedo radiation
that is incident on the front of the module can also be considered.

Refractive indices of c-Si, TiO2, ITO, and Ag used in the calculations were taken from literature
[30–33]. Refractive index data for the front and rear composite (passivation intrinsic and doped)
a-Si:H layers were obtained using ellipsometry, and corresponding n and k values provided
by Meyer Burger Research AG are plotted in Fig. 2. For the window layers, a non-absorbing
optically thick glass layer was considered to have a nondispersive refractive index of n = 1.5. We
note that since the glass layer is non-absorbing, its thickness does not influence the performance
of the solar modules. The refractive index data of EVA and MgF2 were taken from [34] and
[35], respectively. Although MgF2 is not stable under outdoor conditions, we chose this material
for the ARC on top of the window layers since we focus mainly on the optical properties of the
investigated architectures, and MgF2 can be easily included in our model.

2.2. Simulation framework

The numerical simulations of the EVA-cell interface for both AR and LT TiO2 nanodisk arrays
were performed using the finite element method (FEM) with commercial software JCMsuite
[36]. The annual EY was calculated using a comprehensive modeling framework [37] enabling
the quick simulation of various and sophisticated PV architectures under realistic irradiation
conditions discussed in detail in [38].
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Fig. 2. Refractive index n and extinction coefficient k of a-Si:H composite layers. The
measured data were fitted to a Tauc-Lorentz model.

2.3. Electrical parameters

The electrical parameters corresponding to a typical c-Si HJT solar cell used in the annual
EY calculation are summarized in Table 1. The shadowing by electrical connections for all
considered architectures is disregarded.

Table 1. Electrical parameters of the solar cell

Shunt resistance, Rsh [Ω · cm2] 5000

Series resistance, Rs [Ω · cm2] 0.7

Reverse-blocking current, J0 [A/cm2] 2·10−13

Ideality factor, nid 1.1

Temperature coefficient of JSC, tJSC [%/K] 0.05

Temperature coefficient of VOC, tVOC [%/K] −0.25

A device characterized by these properties would have a JSC around 38.3 mA/cm2. This yields
VOC = 0.734 V at temperature T = 25◦C from the following equation:

VOC = nidVthln
(︃
JSC
J0
+ 1

)︃
, (1)

where the thermal voltage Vth = kT/q = 0.0257 V with k being the Boltzmann constant. The
values of ideality factor and reverse-blocking current can be found in Table 1.

2.4. Calculation of reflectance, transmittance, and absorptance

At the EVA-cell interfaces with introduced AR and LT nanodisk arrays, reflectance and transmit-
tance into all scattering directions at each wavelength and incidence polar and azimuth angles
are calculated as the ratio of the scattered reflected or transmitted power to the power of the
incident field. At the investigated interfaces, both c-Si and EVA are assumed to be semi-infinite.
In general, when such semi-infinite substrate and supersaturate are considered, one has to keep in
mind that the EVA-glass and glass-air interfaces can have an influence on the optical performance
of the nanostructured system [39]. However, the wafer thicknesses we consider here lie in the
region between the thin PV and conventional c-Si PV, leading to reduction of such an influence



Research Article Vol. 29, No. 21 / 11 Oct 2021 / Optics Express 34499

on the optical response of the system. Moreover, the matrix formalism used in the EY modeling
framework takes into account the light-matter interaction at the EVA-glass and glass-air interfaces
and couples it with the nanocoated cell-EVA interface, calculating the matrix describing the
optical response of the whole solar module stack. For a given azimuth angle ϕin, reflectance and
transimittance values form matrices of the size (Nθin , Nθr,t , Nλ), where the entries correspond
to all polar angles of incidence, scattering angles, and wavelengths, respectively. The polar
angle θin is varied from 0◦ to 89◦ with 5◦ step, and the results are then interpolated at intervals
of 1◦. In case of azimuth angle ϕin, the symmetry of the nanodisk coating is exploited, and
only calculations for angles between 0◦ and 45◦ with 15◦ step are performed. The calculated
matrices for different ϕin values are subsequently averaged. Total reflectance and transmittance
for a certain wavelength and incident polar and azimuth angles are calculated according to:

R =

∑︁
kr

|Ẽ(kr,x, kr,y)|
2 · cos(θr)

|E0 |2cos(θin)
, (2)

T =

∑︁
kt

nout |Ẽ(kt,x, kt,y)|
2 · cos(θt)

nin |E0 |2cos(θin)
, (3)

where kr,t are the wave vectors of reflected and transmitted fields, θr,t = ℜ(±kz/kr,t) are the
scattering angles, E0 is the amplitude of an incident plane wave with a mixed TE-TM polarization,
and nin and nout are the refractive indices of the media where the incident and scattered
waves propagate, respectively. We use the angular spectrum representation of the fields, and
Ẽ(k{r,t},x, k{r,t},y) in Eqs. (2) and (3) is calculated by means of the Fourier transform of the electric
fields in real space obtained from full-wave simulations. Absorptance in each of the thin film
layers and nanodisk array was calculated by integrating the divergence of the Poynting vector
across the absorber volume, thus yielding absorbed power which is normalized to the power of
the incident plane wave. Similarly to reflectance and transmittance, for a given azimuth angle,
absorptance values form a matrix of the size (Nm, Nθin , Nλ), where index m runs over all absorbing
layers in the front or rear solar cell stack. The angular dependent simulations were performed
for optimized AR and LT nanodisk arrays. The optical performance of the nanodisk arrays was
optimized with respect to the short-circuit current density associated with reflectance at a normal
light incidence, which is calculated using the following equation:

JSC,R =

∫ λ2

λ1

e
SIAM1.5(λ)R(λ)

Eph
dλ, (4)

where e is the electron charge, Eph = hc/λ is the energy of a photon, and SIAM1.5(λ) is the
spectral irradiance. For this calculation, air mass 1.5 global (AM1.5G) tilted irradiance raw
data was taken from [40], and the total reflectance R(λ) was interpolated accordingly. We note
that we assume the perfect charge carrier collection efficiency when calculating JSC,R. The
short-circuit current density due to reflectance was minimized for the front nanodisk array and
maximized for the rear LT nanodisk array. The optimization process was done by varying one of
the geometrical parameters while the others were fixed. With such a procedure we cycled through
all the parameters and optimized them sequentially until the global minimum and maximum
value of JSC,R corresponding to the front and rear cell-encapsulation interfaces have been found.
Within the EY modeling framework, where the optical response of the entire architecture is
computed, the light propagation in multi-layer thin-film stacks is treated coherently, for which the
transfer matrix method is employed. When AR and LT nanodisk arrays are considered instead
of those thin-film layers, the corresponding output matrices for reflectance, transmittance, and
absorptance are integrated into the modeling framework. For thicker layers, such as the c-Si
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substrate of the cell and window layers of the module, the assumption of coherence breaks down.
The Beer-Lambert law can describe the absorption of the light in those layers:

I(z, λ) = I0 · e−α(λ)z, (5)

where I0 is the initial intensity, α is the absorption coefficient of the considered medium, and z is
the distance traveled in it.

3. Results and discussion

3.1. Optical performance of solar modules

First, we will closely look at the optical properties of the cell interfaces with the optimized
AR and LT nanodisk arrays. Figure 3 shows reflectance at normal incidence of the EVA-cell
interfaces for the front and rear HJT solar cell contacts with AR and LT nanodisk arrays. For
both nanodisk arrays and illumination directions, reflectances of the corresponding reference flat
interfaces are plotted for comparison. The graphs (a) and (b) in Fig. 3 correspond to the optical
response of the front EVA-cell interface. In this case, the objective was to minimize short-circuit
current density corresponding to reflectance JSC,R introduced in Eq. (4), which resulted in an AR
nanodisk array with reflectance shown in Fig. 3(a).

Fig. 3. Reflectance at normal incidence for the front and rear EVA-cell interfaces in case
of both AR and LT nanodisk arrays. Inset sketches depict the corresponding interface and
illumination direction. Interfaces are the same for the pairs of graphs (a)-(b) and (c)-(d),
respectively.

As was briefly discussed in Sec. 2.1, the design of the AR nanodisk coating is related to the
ability of the system to avoid cross-talk between the opposite helicities of the electromagnetic
field. The helicity operator Λ is defined as the projection of the angular momentum operator P
onto the direction of the linear momentum operator J, and its eigenvalues ±1 correspond to the
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opposite handednesses of the circularly polarized light. In [29], we have shown for a similar
solar cell stack that upon normally incident illumination with the light of certain handedness, all
the light reflected along the specular direction will be strictly of the flipped helicity (handedness),
and at the wavelengths where the scattering is minimal, the system achieves helicity preservation
in all scattering directions. The requirement for a system to be helicity preserving is to possess a
high enough degree of rotational symmetry (n ≥ 3) along the illumination direction. For normal
light incidence, for which the optimization of AR nanodisk array was performed, the illumination
direction is along the symmetry axis of an individual nanodisk, which essentially means that
n → ∞ in this case. The resulting reflectance of the AR nanodisk array is lower than the one of
the reference optimized flat ARC and exceeds it slightly only in the wavelength region around
λ = 600 nm, for which standard ARC of the solar cell is typically optimized. However, as shown
in Fig. 3(b), the LT properties of this nanodisk array are not as good as its AR properties. When
the light is impinging from the c-Si absorber, only the long-wavelength response is relevant since
the short-wavelength photons are absorbed before reaching this interface. This nanodisk coating
transmits the light reflected from the rear of the stack particularly strongly at longer wavelengths
and is not possessing better LT properties than the standard flat reference. This optical response
confirms that the front nanodisk array contributes to the light harvesting of the considered solar
module architectures mainly by its AR properties.

The graphs (c) and (d) in Fig. 3 demonstrate the optical response of the optimized LT nanodisk
array. Here, the structure parameters strongly differ from those of the helicity preserving AR
nanodisk array. The larger and more sparsely spaced LT nanodisks allow for improved harvesting
of the long-wavelength photons reaching the rear of the solar cell. The impinging light is
effectively scattered into multiple directions since many diffraction orders are allowed. Taking
into account the absorption depth of c-Si, for the minimal considered absorber thickness of 5
µm, the photons that can reach the rear contact of the solar cell have wavelengths λ ≥ 690 nm.
The optimized reflectance of the LT nanodisk array for the spectral region of interest is shown in
Fig. 3(c). Its LT performance exceeds that of the flat reference solar cell stack at all wavelengths.
Nevertheless, as can be seen from Fig. 3(d), though this nanodisk array outperforms its flat
reference counterpart in terms of AR properties in the longer wavelength range, overall, its main
contribution to the improved absorption in c-Si, and, consequently, the annual EY of the solar
module, is due to its superior LT properties. This way, when nanodisk arrays with decoupled AR
and LT properties are present on both sides of the solar cell stack, one can achieve a solid overall
solar module performance boost.

Another critical aspect of the solar module’s optical performance is parasitic absorption. Here,
all discussed results are for a selected median c-Si absorber thickness of 40 µm and at normal
light incidence. Figures 4 and 5 show absorptance in all layers of the monofacial and bifacial
module stacks, respectively, except for the glass layer, which was assumed to be non-absorbing.
Additionally, absorptance of the rear a-Si:H layer in monofacial module configuration and of
the rear and front a-Si:H layers in the bifacial module configuration for forward and backward
illumination direction, respectively, was negligible, and, thus, it is not shown. Moreover, the
LT TiO2 nanodisk array does not introduce any parasitic absorption upon forward illumination
since the light absorbed in these nanodisks has short wavelengths and does not reach the rear
cell interface while it is absorbed in c-Si. Similarly, the AR TiO2 nanodisk array in the bifacial
module configuration does not introduce any parasitic absorption upon backward illumination.
The short-circuit current densities indicated on the top of all graphs in Fig. 4 and Fig. 5 were
calculated assuming AM1.5G spectrum using the modified Eq. (4) with absorptance of c-Si
instead of reflectance.

In the case of the reference module with standard flat ARC (Fig. 4(a)), the front transparent
conductive ITO layer serves as an ARC but also introduces some parasitic absorption. However,
when the AR nanodisk array is introduced (Fig. 4(b)), ITO thickness for the optimized front
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Fig. 4. Absorptance in the different layers of (a) the monofacial reference module with
standard flat ARC and (b) the monofacial module with AR and LT nanodisk arrays on
top of the front and rear ITO contacts at normal light incidence. For both solar module
architectures, the c-Si absorber thickness was 40 µm.

Fig. 5. Absorptance in the different layers of the bifacial solar modules at normal light
incidence: (a) in case of forward illumination direction for the bifacial reference module with
standard flat ARC, (b) in case of forward illumination direction for the bifacial module with
AR and LT nanodisk coatings, (c) in case of backward illumination direction for the bifacial
reference module with standard flat ARC, (d) in case of backward illumination direction for
the bifacial module with AR and LT nanodisk coatings. For both solar module architectures,
the c-Si absorber thickness was 40 µm.
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solar cell contact is reduced considerably (from 75 to 10 nm), and parasitic absorption in this
layer is significantly reduced. The nanodisks themselves have a tiny contribution to the parasitic
absorption, considering that EVA absorbs all the light impinging on the solar module at the
wavelengths between 300 and 360 nm and TiO2 absorbs only at the wavelengths shorter than
λ = 380 nm. On the other hand, while the AR nanodisk array increases absorptance in c-Si
thanks to a better in-coupling of the incident light, it also increases parasitic absorption in the
front a-Si:H layer. However, it should be noted that in [41] it was shown that the carriers which
are absorbed in an intrinsic a-Si:H layer can still contribute to the short-circuit current, and thus
the parasitic absorption loss in this layer represents an upper bound and can have a less of an
impact in reality. The LT nanodisk array additionally boosts the optical performance improving
absorptance in c-Si at the longer wavelengths. However, due to the strong scattering enabled
by LT nanodisks, parasitic absorption is also increased for longer wavelengths. If we compare
the short-circuit current density in the case of solar module architecture with the AR and LT
nanodisk arrays to the short-circuit current density of the state-of-the-art architecture (Fig. 1(e))
for the same wafer thickness of 40 µm, the latter will have JSC = 36.1 mA/cm2, which yields the
difference of 1.1 %rel. Hence, although performing slightly worse than the random pyramidal
texture, the nanodisk arrays allow for a broadband enhancement of absorptance in the silicon
absorber layer and can provide a decent alternative to the pyramids in cases when the wafer
texturing becomes tricky.

In the case of the bifacial standard reference module and forward illumination direction
(Fig. 5(a)), the parasitic absorption for the wavelengths below λ = 700 nm is similar to the
one of the monofacial module reference. However, the parasitic absorption is slightly lower in
the long-wavelength range since more light is transmitted through the glass and encapsulation
window layers. When AR and LT nanodisk arrays are introduced (Fig. 5(b)), they improve
absorptance in silicon the same way as in the case of the monofacial module. When the light is
impinging on the rear side of the bifacial solar module (Fig. 5(d)), absorptance in c-Si is also
improved in the case when AR and LT arrays are introduced in comparison to the reference
module with standard flat ARC (Fig. 5(c)), even though LT nanodisks are not optimal in terms of
their AR properties and introduce dips in silicon absorptance due to the sharp spectral features
which can be seen in Fig. 3(d). To compare with the state-of-the-art bifacial solar module
architecture from Fig. 1(f), we once again look at the short-circuit current densities. For the
bifacial module with the chemically textured 40 µm silicon wafer, JSC in the case of forward
and backward illumination directions were determined to be 34.7 mA/cm2 and 34.6 mA/cm2,
respectively. Similar to the monofacial module architecture, the module with random pyramidal
texture outperforms the module with the nanodisks, with the difference in JSC being 0.9 %rel for
the forward and 6.1 %rel for backward illumination direction.

3.2. Energy yield of solar modules

Having obtained the optical response of the systems with nanodisks at the front and rear cell-EVA
interfaces, we analyzed the annual EY of the solar module architectures introduced in Fig. 1 for
three cities in the United States of America located in different climate zones [42]. Two of the
chosen cities, Anchorage, AK and Honolulu, HI, have highly contrasting irradiation conditions.
The former is a cold and cloudy region (Boreal climate) and the latter a hot and sunny one
(Tropical climate). The additionally chosen Kansas City, MO, has a temperate climate that
receives an annual solar irradiance between Anchorage and Honolulu. By covering different
climate zones, we aimed to highlight the robustness of the nanodisk arrays performance and
their ability to improve the annual EY for all types of irradiation conditions, albeit with small
differences that most likely originate from the spectral features introduced by the nanodisk arrays.
The solar modules were considered to face south, and the tilt angles θm were optimized for each
location. This resulted in θm values to be 38◦ for Anchorage, 30◦ for Kansas City, and 17◦
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for Honolulu, respectively. We note that the extensive annual EY analysis was performed for
the module architectures (a)-(d) in Fig. 1. The annual EY of the architectures (e) and (f) was
calculated only for one location (Kansas City) for a few select silicon wafer thicknesses.

Figure 6 demonstrates the relative improvement of the annual EY when the nanodisk arrays
are used for light management instead of the optimized planar layers. The increase of the annual
EY is shown as a function of the c-Si absorber thickness. For this calculation, no albedo was
considered. In the realistic scenario, the bifacial solar modules are always installed on the surface
with some albedo. However, the influence of albedo radiation on the EY is stronger for the sunnier
locations. Thus, we assumed the absence of albedo to show the robustness of the performance of
the solar modules with the nanocoated cell interfaces irrespective of the irradiation conditions.
The relative increase of the annual EY reached up to 23.3 %rel and 43.0 %rel at the minimal wafer
thickness of 5 µm for monofacial and bifacial architectures with nanodisks, respectively.

Fig. 6. Relative increase of the annual EY for three locations in case of (a) the monofacial
solar module (comparing (b) to (a) from Fig. 1) and (b) the bifacial solar module (comparing
(d) to (c) from Fig. 1) with varying thickness of the c-Si absorber.

As expected, for the monofacial case, the module with the AR and LT nanodisk arrays
(Fig. 1(b)) outperforms the standard flat architecture with the optimized ARC (Fig. 1(a)), with
this effect becoming even more apparent when reducing the c-Si absorber thickness. In the
monofacial solar module case, the LT nanodisk array’s sole purpose is to enhance the optical
path length in the absorber. With the individual disk parameters being significantly larger when
compared to the nanodisk array used as the AR structure at the front interface, the light which is
not absorbed in the silicon and reaches the rear interface of the cell is effectively scattered in
multiple directions, thus improving the LT properties of the cell. When instead of a reflective
backsheet, the window encapsulation and glass layers are introduced (Fig. 1(d)) to take advantage
of the solar irradiation which can hit the module on its back, the LT nanodisk array should also
act as a decent ARC. From Fig. 6(b) it can be seen that it translates into an even more significant
increase of the annual EY than for monofacial module architecture when comparing to a reference
bifacial module architecture (Fig. 1(c)).

The comparison of the EY performance of the monofacial and bifacial architectures with
nanodisks to the performance of the state-of-the-art architectures with random pyramidal textures
is given in Table 2. We considered the two c-Si absorber thicknesses from the range we discuss in
the paper – the median thickness of 40 µm, and the thickness of 80 µm below which the texturing
of the wafer becomes complicated, and, finally, the standard thickness of c-Si wafer of 160 µm.
In the case of the bifacial module architectures, we considered the sandstone ground surface.
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Due to the differences between the short-circuit current densities for the modules with nanodisk
arrays and random pyramidal texture discussed in Sec. 3.1, the state-of-the-art architectures
outperform the architectures with the nanodisk arrays for all three wafer thicknesses. As expected,
the minimal difference between the performance of the solar modules occurs for the thickest
c-Si absorber. When comparing the architectures from Figs. 1(e) to 1(b) and Figs. 1(f) to 1(d)
in the case of 160 µm c-Si wafer, the difference in the annual EY goes down to 1.8 %rel and
2.6 %rel, respectively. However, we stress that the pyramidal textures are challenging to apply
for thinner wafers on which we concentrate here. Therefore, the considered nanodisk arrays
constitute an excellent alternative because their fabrication is feasible, and they allow approaching
the performance of the pyramidal textures.

Table 2. Comparison of the annual EY in Kansas City of the monofacial and
bifacial solar modules with nanodisks and the solar modules with random

pyramidal texture

Wafer thickness [µm]

Module architecture 40 80 160

Energy yield [kWh·m−2a−1]

Monofacial with nanodisks 337.7 348.7 358.1

Monofacial with random pyramidal texture 344.9 355.6 364.5

Bifacial with nanodisks 356.5 370.6 382.2

Bifacial with random pyramidal texture 366.6 380.6 392.0

Additionally, we considered the influence of albedo radiation for the module architectures
(a)-(d) in Fig. 1. The results are shown in Fig. 7. Here, the annual EY of the four module
architectures with a selected median c-Si absorber thickness of 40 µm is shown for the sandstone
and grass ground surface compared to EY of the modules without albedo. Since the interfaces
of the reference modules with standard ARC are flat, without albedo, the monofacial standard
reference module outperforms the bifacial reference. While for the former, the backsheet reflects
the light reaching it back into the cell, for the latter, a lot of light is lost due to transmittance
when no LT structure is introduced. This difference is bigger with a smaller module tilt angle
since less irradiation can hit the module from the back. However, as soon as albedo radiation
is considered, the bifacial standard reference outperforms its monofacial counterpart. While
for monofacial architecture albedo radiation does not make a significant difference, one can see
a robust improvement in the annual EY for the bifacial case. The increase of the annual EY
for the monofacial architecture varies depending on the module tilt and is stronger for locations
with a greater θm (Anchorage). The relative improvement reaches up to around 0.8 %rel with
sandstone and 3.0 %rel with grass as a ground surface for both the reference monofacial module
with standard flat ARC and monofacial module with AR and LT nanodisk arrays with insignificant
difference between them. In the case of the bifacial module architecture, a stronger increase of
the annual EY is expected for the sunnier locations (Honolulu). It reaches up to 8.2 %rel with
sandstone, and 28.9 %rel with grass ground surface in case of a reference bifacial module with
standard flat ARC. For a bifacial module with AR and LT structures, the relative increase is
8.3 %rel and 30.1 %rel with sandstone and grass ground surface, respectively.
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Fig. 7. Energy yield of the module architectures (a)-(d) from Fig. 1 for different locations
when albedo irradiation is taken into account. For all solar module architectures, the c-Si
absorber thickness was 40 µm.

4. Conclusions

We have numerically studied the annual energy yield (EY) under realistic irradiation conditions for
monofacial and bifacial crystalline silicon (c-Si) heterojunction (HJT) solar module architectures
with anti-reflective (AR) and light trapping (LT) titanium dioxide (TiO2) nanodisk square arrays
introduced on top of the front and rear ITO layers and compared their power outputs with the
ones of the corresponding reference solar modules with standard flat ARCs. We have shown
that while reducing the silicon absorber thickness down to 5 µm, the relative increase of the
annual EY is reaching up to 23.3 %rel and 43.0 %rel for monofacial and bifacial modules with
nanodisk coatings, respectively. This improvement is comparable for the locations with different
climate conditions. Moreover, in the case of bifacial module architecture, taking into account
the albedo radiation produces an additional boost of the module performance. Additionally,
we compared the performance of the solar modules with nanodisk arrays to the state-of-the-art
modules with random pyramidal texture. Even though the latter outperform the modules with the
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nanodisks, the structures we propose prove to be a sufficiently good alternative for the silicon
wafer thicknesses at which texturing becomes challenging.

The designed dielectric nanodisk arrays for the front and rear contacts of c-Si HJT solar
cell have both a significant impact on the light absorption in the c-Si wafer. At the same time,
their AR and LT properties are decoupled. The front AR nanodisk array has a relatively small
individual disk size and lattice constant. The broadband backscattering suppression by the system
with such AR nanodisks is related to the system’s ability to preserve helicity (handedness) of
the light for the illumination direction along the symmetry axis of the system. In contrast, the
rear LT nanodisk array has larger features and array pitch and allows for efficient scattering into
multiple scattering directions. Furthermore, these AR and LT nanodisk square array designs are
not restricted to a specific material or a particular photovoltaic solar cell stack and, thus, can be
investigated for different solar module configurations.
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