10 research outputs found

    3D printing of amorphous solid dispersions: A comparison of fused deposition modeling and drop-on-powder printing

    Get PDF
    Nowadays, a high number of pipeline drugs are poorly soluble and require solubility enhancement by e.g., manufacturing of amorphous solid dispersion. Pharmaceutical 3D printing has great potential in producing amorphous solid oral dosage forms. However, 3D printing techniques differ greatly in terms of processing as well as tablet properties. In this study, an amorphous formulation, which had been printed via Fused Deposition Modeling and drop-on-powder printing, also known as binder jetting, was characterized in terms of solid-state properties and physical stability. Solid state assessment was performed by differential scanning calorimetry, powder X-ray diffraction and polarized microscopy. The supersaturation performance of the amorphous solid dispersion was assessed via non-sink dissolution. We further evaluated both 3D printing techniques regarding their processability as well as tablet uniformity in terms of dimension, mass and content. Challenges and limitations of each 3D printing technique were discussed. Both techniques are feasible for the production of amorphous formulations. Results indicated that Fused Deposition Modeling is better suited for production, as the recrystallization tendency was lower. Still, filament production and printing presented a major challenge. Drop-on-powder printing can be a viable alternative for the production of amorphous tablets, when a formulation is not printable by Fused Deposition Modeling

    Nutzung additiver Fertigungstechnologien zur Entwicklung von Darreichungsformen für die lokale Applikation von Arzneistoffen.

    No full text
    Ziel dieser Arbeit war die Entwicklung von Arzneiformen mit neuartigen, auf der Mechanik des GIT basierenden Freisetzungsmechanismen. Für die Herstellung dieser Arzneiformen sollten additive Fertigungsprozesse entwickelt und etabliert werden. Für die Herstellung von Arzneiformen wurden 3D-Drucker modifiziert, sodass es möglich war, pharmazeutische Polymere als Ausgangsstoff nutzen zu können. Die Polymere wurden mittels eines eigens zu diesem Zweck entworfenen und gebauten Extruders in Filamente überführt. Die Mechanik der verwendeten 3D-Drucker wurde an die Materialeigenschaften der Polymere angepasst. Insbesondere die geringe Flexibilität und erhöhte Sprödigkeit machten Modifikationen notwendig. Mit Eudragit® RS konnte ein Prozess etabliert werden, der die Herstellung von drucksensitiven Arzneiformen ermöglicht. Eine speziell für den Druck dieser Objekte entwickelte Software wurde angewendet, um den Steuercode für den 3D-Drucker zu erzeugen und die Freisetzungsparameter der Arzneiform einstellen zu können. Vorversuche mit technischem PLA Filament dienten der Entwicklung der Herstel- lungsmethode. Aus Eudragit® RS wurden anschließend Arzneiformen hergestellt und auf ihr Bruchverhalten untersucht. Drei Chargen wurden in der Stresstest- apparatur für orale Arzneiformen einer Freisetzungprüfung unterzogen. Es konnte gezeigt werden, dass der entwickelte Prozess Arzneiformen mit verschiedenen Bruchdrücken produzieren kann. Alle Chargen wiesen allerdings geringere Belastbarkeiten auf, als für eine Anwendung am Menschen notwendig wäre. Freisetzungssysteme dieser Art könnten auch verwendet werden, um wirkstoffhaltige Filme gezielt auf die Dünndarmschleimhaut aufzubringen. Die Geometrie von Objekten, die mittels additiver Verfahren gefertigt werden, ist in weiten Bereichen variabel. Der Einfluss der äußeren Form auf die Freisetzungsrate ist bereits Gegenstand der Forschung. Wie sich von bekannten Arzneiformen abweichende Geometrien auf die Schluckbarkeit auswirken, war ein weiterer Bestandteil der Untersuchungen dieser Arbeit. Zur Beurteilung der Schluckbarkeit wurde eine Humanstudie durcheführt, in der gesunde Probanden Schluckvorgänge von verschiedenen Objekten bewerteten. Die untersuchten Geometrien orientierten sich zum Teil an bekannten Arzneiformen. Zusätzlich wurden neuartige Geometrien untersucht, die aufgrund ihrer Eigenschaften interessant für die Entwicklung von Arzneiformen erschienen und durch additive Fertigungsverfahren zugänglich sind. Die Herstellung der Arzneiformen aus Isomalt erfolgte mittels eines modifizierten 3D-Druckers. Dieser als Lebensmittelzusatzstoff zugelassene Stoff eignet sich zum Einsatz in Fused Deposition Modelling Prozessen aufgrund der hohen Viskosität bei Temperaturen im Schmelzbereich. Das 3D-Drucksystem zur Verarbeitung spröder Filamente wurde im Rahmen dieser Arbeit entwickelt und bot die Möglichkeit, vier identische Objekte zur gleichen Zeit zu produzieren. Auf diese Weise konnte der Herstellungsprozess der für die Studie benötigten Testkörper verkürzt werden. Neben einem mechanisch stark überarbeiteten Düsensystem kam an diesem Drucker auch eine modifizierte elektronische Steuereinheit zum Einsatz, die den Einsatz der höheren Düsenanzahl zuließ und Funktionen für die komfortable Einrichtung und Reinigung des Druckers bereitstellte. In der Humanstudie wurde gezeigt, dass die Geometrie einen starken Einfluss auf die Schluckbarkeit der Testkörper und das Empfinden während des Schluckvorgangs hat. Als negativ haben sich Geometrien erwiesen, deren Kanten in spitzen Winkeln zulaufen und keine längliche Form aufweisen, die eine parallele Orientierung im Rachenbereich zulässt. Vorteilhaft hingegen sind Formen, die sich in Schluckrichtung ausrichten können und in einer Schnittebene einen deutlich kleineren Querschnitt aufweisen, als in den rechtwinklig dazu angeordneten Schnittebenen. Neben der Einwirkung von Druck durch den GIT wurde auch die Bewegung einer oralen Arzneiform in Relation zur Oberfläche des Lumens des GIT für das drug targeting genutzt. Die entwickelte Arzneiform sollte die gezielte Arzneistoffapplikation auf der Mukosa des Ösophagus ermöglichen. Erkrankungen in diesem Bereich des GIT können bislang lokal kaum behandelt werden, da die Kontaktzeit eines oral verabreichten Arzneistoffes sehr kurz ist. Die aus diesem Grund notwendige systemische Behandlung ist mit einer hohen Arzneistoffbelastung des Organismus und damit einhergehenden unerwünschten Wirkungen verbunden. Im Rahmen dieser Arbeit wurde ein schluckbares mechanisches System entwickelt, welches die gesteuerte Applikation eines Films über die gesamte Länge des Ösophagus auf dessen Schleimhaut ermöglicht. Die mukoadhäsiven Eigenschaften des Films können zu einer erhöhten Kontaktzeit führen, wodurch lokale Erkrankungen des Ösophagus einer topischen Therapie zugänglich gemacht werden könnten. Die entwickelte Arzneiform besteht aus einem Film, der mit Wirkstoff beladen werden kann und einer Hülle, die gleichzeitig das orale Applikationssystem dar- stellt. Mittels eines speziellen Applikators wird die Arzneiform geschluckt. Der Film ist in seiner Hülle so gelagert, dass er durch den Transport durch Mund- und Rachenraum sowie den Ösophagus aus dem Applikationssystem gezogen wird. Bei Kontakt mit dem kollabierenden Ösophagus verweilt der Film aufgrund seiner mu- koadhäsiven Eigenschaften auf der Schleimhaut, während das Applikationssystem den Magen erreicht und rasch disintegriert. Der Film quillt auf der Schleimhaut und kann den Arzneistoff über längere Zeit freisetzen. Es konnte gezeigt werden, dass neben den etablierten Freisetzungsmechanismen zur Steuerung oraler arznei- stoffbeladener Systeme auch die Mechanik des GIT für das drug targeting genutzt werden kann. In Verbindung mit additiven Fertigungsverfahren lassen sich orale Arzneiformen entwickeln, deren Freisetzungsparameter ausschließlich mittels digitaler Informationen variiert werden können.The aim of this PhD thesis was to develop dosage forms with new drug release mechanism relying on gastro intestinal motility. The production of these objects additive manufacturing techniques, more precisely a fused deposition modeling process should be developed and established for pharmaceutical use. A 3d printer was modified to use pharmaceutical polymers as raw material. The polymers were converted into filaments by an specially designed apparatus. The mechanics of the used 3d printers were adopted to meet the requirements for the use of brittle pharmaceutical polymers. Eudragit ® RS could be used to manufacture pressure sensitive dosage forms. To overcome the limitations of readily available slicing software an optimized script was programmed to generate the gcode used to control the printer and thereby alter drug release parameter such as gastro intestinal pressure. These processes were investigated and optimized using commercially available PLA filament. Afterwards the processes were transferred to Eudragit ® Filament. Three batches of pressure sensitive dosage forms were manufactured and their release profiles were investigated. It was shown that drug release was triggered by different pressures. The developed release mechanism could be used to apply drug containing films on the intestinal mucosa. The geometry of objects manufactured by additive manufacturing processes con the freely varied in brought ranges. The influence of the geometry on the release profile of solid oral dosage forms is investigated in the literature. Furthermore, the influence of the outer geometry of solid oral dosage forms was investigated in this study. Therefore, a clinical trial with twelve healthy volunteers was conducted. The geometries investigated comprised known geometries like biplane and oblong tablets as well as new geometries which are yet unknown for solid oral dosage forms but considered relevant for 3d printed modified release tablets. Objects made form isomalt were manufactured using a modified 3d printer. This material was chosen because it is known as a food additive. Isomalt can be processed via fused deposition modeling because of its rheological properties at elevated temperatures. The printer was equipped with four separate hotends to increase the throughput and the number of manufactured objects. Beside mechanical modifications it was necessary adopt the electronic control unit of the printer as well. The clinical trial indicated that the geometry of the tested objects had an impact on their swallow ability. Beneficial for the swallow ability are oblong shaped geometries while objects with sharp edges in different special orientations. Not only the gastro intestinal pressure profile was facilitated to create newly designed release mechanism but also the motility of the gastro intestinal tract and resulting motions of solid oral dosage forms was used. The developed drug targeting system could be used to apply active pharmaceutical ingredients on the esophageal mucosa. Specific topical drug targeting of this region was hardly possible before because of the very short contact time of the API with the mucosa during swallowing. To overcome these limitations a swallowable, mechanical system was developed which is capable of releasing a drug loaded film over length of the esophagus. Due to the mucoadhesive properties of the film formulation prolonged release on the mucosa could be achieved. The film is stored in a capsule shaped device which acts as the applicator in the same time. After retaining the end of the film in the mouth, the thin film is pulled out of the applicator during swallowing and applied on the esophageal mucosa. While the empty capsule shaped application system dissolves in the stomach, the film swells and releases the active pharmaceutical ingredient for a prolonged period of time on the mucosa. It was shown, that the motility and mechanics of the gastro intestinal tract can be used to trigger novel release systems for solid oral dosage forms. Combined the novel manufacturing techniques as fused deposition modeling new dosage forms could be developed to address unsolved issues in pharmacotherapy

    Influence of Siluron® insertion on model drug distribution in the simulated vitreous body

    No full text
    Biorelevant in vitro test systems may be helpful to understand the in vivo behaviour of modern intravitreal dosage forms such as implants and injections. The already presented Vitreous Model (VM) in combination with the Eye Movement System (EyeMoS) was used to simulate the situation after a vitrectomy in combination with Siluron® silicone oil (SO) insertion in vitro and to investigate the distribution of the model drug fluorescein sodium (FS) within the modified VM. The state after a vitrectomy was simulated in vitro by replacing half the volume of the gelled vitreous substitute by SO. Under consideration of simulated eye movements the position of SO towards the simulated vitreous body was examined. Furthermore, the influence of two different injection techniques was studied. On the one hand, FS was injected directly into the gel and on the other hand the injection was set through the gel in order to directly reach the SO. Independent of the injection technique, it was shown that the model drug distributed almost exclusively into the gel and not into the SO. This can be explained with the backflow of FS into the gel and the lack of solubility in the SO. Using the modified VM and EyeMoS, the in vitro characterization of drug release and distribution behaviour of intravitreal injections can be performed under consideration of a simulated vitrectomy

    Development and Application of a Dissolution-Transfer-Partitioning System (DTPS) for Biopharmaceutical Drug Characterization

    No full text
    A variety of in vitro dissolution and gastrointestinal transfer models have been developed aiming to predict drug supersaturation and precipitation. Further, biphasic, one-vessel in vitro systems are increasingly applied to simulate drug absorption in vitro. However, to date, there is a lack of combining the two approaches. Therefore, the first aim of this study was to develop a dissolution-transfer-partitioning system (DTPS) and, secondly, to assess its biopredictive power. In the DTPS, simulated gastric and intestinal dissolution vessels are connected via a peristaltic pump. An organic layer is added on top of the intestinal phase, serving as an absorptive compartment. The predictive power of the novel DTPS was assessed to a classical USP II transfer model using a BCS class II weak base with poor aqueous solubility, MSC-A. The classical USP II transfer model overestimated simulated intestinal drug precipitation, especially at higher doses. By applying the DTPS, a clearly improved estimation of drug supersaturation and precipitation and an accurate prediction of the in vivo dose linearity of MSC-A were observed. The DTPS provides a useful tool taking both dissolution and absorption into account. This advanced in vitro tool offers the advantage of streamlining the development process of challenging compounds

    Determination of feed forces to improve process understanding of Fused Deposition Modeling 3D printing and to ensure mass conformity of printed solid oral dosage forms

    No full text
    Fused Deposition Modeling is a suitable technique for the production of personalized solid oral dosage forms. For widespread application, it is necessary to be able to print a wide range of different formulations to address individual therapeutic needs. Due to the complexity of formulation composition (e.g., due to different compounds, excipients for enhancement of release and mechanical properties) and limited mechanical understanding, determination of suitable printing parameters is challenging. To address this challenge, we have developed a feed force tester using a Texture Analyser setup that mimics the actual printing process. Feed force data were compared to the mass of tablets printed from technical materials as well as pharmaceutical filaments containing ketoconazole at high drug loads of 20% and 40% and polyvinyl alcohol. By determining a feed force limit for the 3D printer from feed force data of several formulations printed, it was possible to specify the operable printing range, where printing is reproducible and printed mass corresponds the target mass. Based on these results, rational optimization of the printing process in terms of speed, time and temperature for different materials and formulations is possible

    Quality of FDM 3D Printed Medicines for Pediatrics: Considerations for Formulation Development, Filament Extrusion, Printing Process and Printer Design

    No full text
    3d printing is capable of providing dose individualization for pediatric medicines and translating the precision medicine approach into practical application. In pediatrics, dose individualization and preparation of small dosage forms is a requirement for successful therapy, which is frequently not possible due to the lack of suitable dosage forms. For precision medicine, individual characteristics of patients are considered for the selection of the best possible API in the most suitable dose with the most effective release profile to improve therapeutic outcome. 3d printing is inherently suitable for manufacturing of individualized medicines with varying dosages, sizes, release profiles and drug combinations in small batch sizes, which cannot be manufactured with traditional technologies. However, understanding of critical quality attributes and process parameters still needs to be significantly improved for this new technology. To ensure health and safety of patients, cleaning and process validation needs to be established. Additionally, adequate analytical methods for the in-process control of intermediates, regarding their printability as well as control of the final 3d printed tablets considering any risk of this new technology will be required. The PolyPrint consortium is actively working on developing novel polymers for fused deposition modeling (FDM) 3d printing, filament formulation and manufacturing development as well as optimization of the printing process, and the design of a GMP-capable FDM 3d printer. In this manuscript, the consortium shares its views on quality aspects and measures for 3d printing from drug-loaded filaments, including formulation development, the printing process, and the printed dosage forms. Additionally, engineering approaches for quality assurance during the printing process and for the final dosage form will be presented together with considerations for a GMP-capable printer design

    Quality of FDM 3D Printed Medicines for Pediatrics: Considerations for Formulation Development, Filament Extrusion, Printing Process and Printer Design

    No full text
    3d printing is capable of providing dose individualization for pediatric medicines and translating the precision medicine approach into practical application. In pediatrics, dose individualization and preparation of small dosage forms is a requirement for successful therapy, which is frequently not possible due to the lack of suitable dosage forms. For precision medicine, individual characteristics of patients are considered for the selection of the best possible API in the most suitable dose with the most effective release profile to improve therapeutic outcome. 3d printing is inherently suitable for manufacturing of individualized medicines with varying dosages, sizes, release profiles and drug combinations in small batch sizes, which cannot be manufactured with traditional technologies. However, understanding of critical quality attributes and process parameters still needs to be significantly improved for this new technology. To ensure health and safety of patients, cleaning and process validation needs to be established. Additionally, adequate analytical methods for the in-process control of intermediates, regarding their printability as well as control of the final 3d printed tablets considering any risk of this new technology will be required. The PolyPrint consortium is actively working on developing novel polymers for fused deposition modeling (FDM) 3d printing, filament formulation and manufacturing development as well as optimization of the printing process, and the design of a GMP-capable FDM 3d printer. In this manuscript, the consortium shares its views on quality aspects and measures for 3d printing from drug-loaded filaments, including formulation development, the printing process, and the printed dosage forms. Additionally, engineering approaches for quality assurance during the printing process and for the final dosage form will be presented together with considerations for a GMP-capable printer design

    Immunological challenges for peptide-based immunotherapy in glioblastoma

    Full text link
    Glioblastoma is the most aggressive primary tumor of the central nervous system with a medium overall survival of 7-15months after diagnosis. Since tumor cells penetrate the surrounding brain tissue, complete surgical resection is impossible and tumor recurrence is almost a certainty. New treatment modalities are therefore needed, and these should be able to trace, identify, and kill dispersed tumor cells with great accuracy. Immunological approaches in principle meet these needs. Unfortunately, due to profound tumor-associated mechanisms of immunosuppression and -evasion, immunotherapeutic strategies like peptide vaccination have so far not been translated into clinical success. If future, peptide-based vaccination approaches shall be successful in glioblastoma therapy, multiple questions need to be solved including identification of suitable antigens, route and mode of vaccination, preparation of the tumor-bearing "host" and antagonizing, as much as this is possible, glioblastoma-associated mechanisms of immune evasion and poor vaccination response. In this review we will address the immunological challenges of glioblastoma and discuss key aspects that have rendered successful immunotherapy difficult in the past
    corecore