1,009 research outputs found

    Magnetization of Electrolytic Nickel Films

    Get PDF
    The magnetic properties of nickel films electrolytically deposited on brass tubes are determined by the method previously described for Iron and Cobalt films (Phys. Rev. 30, 681 (1927); 35 292 (1930). Films about 130 rnμ thick attain a magnetization of about 380 c. g. s. units in a field of 200 gauss, a value about equal to that for bulk nickel. As in Iron and Cobalt the coercive force is high, but the remanence is somewhat less than was found for iron and cobalt

    Establishing the entatic state in folding metallated Pseudomonas aeruginosa azurin

    Get PDF
    Understanding how the folding of proteins establishes their functional characteristics at the molecular level challenges both theorists and experimentalists. The simplest test beds for confronting this issue are provided by electron transfer proteins. The environment provided by the folded protein to the cofactor tunes the metal's electron transport capabilities as envisioned in the entatic hypothesis. To see how the entatic state is achieved one must study how the folding landscape affects and in turn is affected by the metal. Here, we develop a coarse-grained functional to explicitly model how the coordination of the metal (which results in a so-called entatic or rack-induced state) modifies the folding of the metallated Pseudomonas aeruginosa azurin. Our free-energy functional-based approach directly yields the proper nonlinear extra-thermodynamic free energy relationships for the kinetics of folding the wild type and several point-mutated variants of the metallated protein. The results agree quite well with corresponding laboratory experiments. Moreover, our modified free-energy functional provides a sufficient level of detail to explicitly model how the geometric entatic state of the metal modifies the dynamic folding nucleus of azurin

    In Vitro Evaluation of Non-Protein Adsorbing Breast Cancer Theranostics Based on 19F-Polymer Containing Nanoparticles

    Get PDF
    Eight fluorinated nanoparticles (NPs) are synthesized, loaded with doxorubicin (DOX), and evaluated as theranostic delivery platforms to breast cancer cells. The multifunctional NPs are formed by self-assembly of either linear or star-shaped amphiphilic block copolymers, with fluorinated segments incorporated in the hydrophilic corona of the carrier. The sizes of the NPs confirm that small circular NPs are formed. The release kinetics data of the particles reveals clear hydrophobic core dependence, with longer sustained release from particles with larger hydrophobic cores, suggesting that the DOX release from these carriers can be tailored. Viability assays and flow cytometry evaluation of the ratios of apoptosis/necrosis indicate that the materials are non-toxic to breast cancer cells before DOX loading; however, they are very efficient, similar to free DOX, at killing cancer cells after drug encapsulation. Both flow cytometry and confocal microscopy confirm the cellular uptake of NPs and DOX-NPs into breast cancer cells, and in vitro 19F-MRI measurement shows that the fluorinated NPs have strong imaging signals, qualifying them as a potential in vivo contrast agent for 19F-MRI

    Functional polyaniline nanofibre mats for human adipose-derived stem cell proliferation and adhesion

    Get PDF
    Conductive polymer poly(aniline-co-m-aminobenzoic acid) (P(ANI-co-m-ABA)) and polyaniline (PANI) were blended with a biodegradable, biocompatible polymer, poly(l-lactic acid) and were electrospun into nanofibres to investigate their potential application as a scaffold for human adipose-derived stem cells (hASCs). These polymers, in both conductive and non-conductive form, were electrospun with average fibre diameters of less than 400 nm. Novel nanoindentation results obtained on the individual nanofibres revealed that the elastic moduli of the nanofibres are much higher at the surface (4–10 GPa, hmax 75 nm). The composite nanofibres showed great promise as a scaffold for hASCs as they supported the cell adhesion and proliferation. After 1 week of cell culture hASCs were well spread on the substrates with abundant focal adhesions. The electrospun mats provide the cells with comparably stiff, sub-micron sized fibres as anchoring points on a substrate of high porosity. The conductive nature of these composite nanofibres offers exciting opportunities for electrical stimulation of the cells

    Childhood school segregation and later life sense of control and physical performance in the African American Health cohort

    Get PDF
    BACKGROUND: The association between childhood school desegregation and later life sense of control and physical performance among African Americans is not clear. We hypothesized that childhood school desegregation adversely affected the sense of control of in later life, and that this reduced sense of control accounts in part for reduced physical performance. METHODS: In-home follow-up assessments were completed in 2010 with 582 of the 58–74 year old men and women participating in the on-going African American Health cohort. We used these data to examine the relationship between (a) retrospective self-reports of attending segregated schools during one’s 1(st)-to-12(th) grade education and one’s current sense of control, as well as (b) the association between current sense of control and physical performance. Multiple linear regression analysis with propensity score re-weighting was used. RESULTS: Attending segregated schools for at least half of one’s 1(st)-to-12(th) grade education was significantly associated with higher scores on the sense of control. Adjusting for all covariates and potential confounders, those receiving half or more of their 1(st)-to-12(th) grade education in segregated schools had sense of control scores that were .886 points higher (p ≤ .01; standardized effect size = .22). Sense of control scores were independently (all p < .01) associated with better systolic blood pressure, grip strength, peak expiratory flow, chair stands, balance tests, and the Short Portable Physical Battery even after adjusting for all covariates and potential confounders. Moreover, sense of control scores either partially or fully mediated the statistically significant beneficial associations between childhood school segregation and physical performance. CONCLUSIONS: Childhood school desegregation was adversely associated with the sense of control of African Americans in later life, and this reduced sense of control appears, in part, to account for their poorer physical performance. The etiologic mechanism through which childhood school segregation at the time that this cohort experienced it improved the sense of control in later life, which subsequently led to better physical performance, has not been identified. We suspect, however, that the pathway involves greater exposure to racial solidarity, same-race students as peer role models and same-race teachers and principals as authority role models, the reduced likelihood of exposure to race-based discrimination or antagonism during their formative early lives, and greater exposure to encouragement and support for academic and life success

    Effect of Biodiversity Changes in Disease Risk: Exploring Disease Emergence in a Plant-Virus System

    Get PDF
    The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species

    Critical specific heats of the N-vector spin models on the sc and the bcc lattices

    Get PDF
    We have computed through order β21\beta^{21} the high-temperature expansions for the nearest-neighbor spin correlation function G(N,β)G(N,\beta) of the classical N-vector model, with general N, on the simple-cubic and on the body-centered-cubic lattices. For this model, also known in quantum field theory as the lattice O(N) nonlinear sigma model, we have presented in previous papers extended expansions of the susceptibility, of its second field derivative and of the second moment of the correlation function. Here we study the internal specific energy and the specific heat C(N,β)C(N,\beta), obtaining new estimates of the critical parameters and therefore a more accurate direct test of the hyperscaling relation dν(N)=2α(N)d \nu(N)=2 - \alpha(N) on a range of values of the spin dimensionality N, including N=0 [the self-avoiding walk model], N=1 [the Ising spin 1/2 model], N=2 [the XY model], N=3 [the classical Heisenberg model]. By the newly extended series, we also compute the universal combination of critical amplitudes usually denoted by Rξ+(N)R^+_{\xi}(N), in fair agreement with renormalization group estimates.Comment: 15 pages, latex, no figure
    corecore