53 research outputs found

    Siting conflicts between wind power and military aviation-Problems and potential solutions

    No full text
    The expansion of wind power in Sweden has brought increasing conflicts between the wind power industry and the interests of the military forces. This paper analyses the reasons for these perceived conflicts and suggests solutions for mitigating at least some of the problems. The analysis is based on literature studies, several semistructured interviews and workshops with stakeholders in Sweden, Denmark, Germany, Finland and Norway. Some of the problems originate from diverging views on how various societal interests should be weighed against each other, others from uncertainties in the planning and investment environment. The wind power industry has difficulties predicting whether a project will be rejected by the armed forces and believes that the armed forces often change their view on a specific project during the planning process. The Swedish armed forces, on their part, perceive the planning process to be hampered by low-quality, unsubstantiated applications, which sometimes block potentially available areas for more serious applicants. Better communication to improve mutual understanding between the stakeholders and more efficient information systems regarding existing and planned wind power plants would help reduce planning uncertainties in the short term. Better information on how wind power and military installations affect each other in a technical sense could also be important. Early identification of areas with little or no risk of conflict with military interests would help decrease the proportion of projects rejected by the military. In a more far-reaching reform, the wind power planning and permit system could be changed to one similar to the current Danish system, which provides a more important role for comprehensive spatial planning than granting of permits for single projects. (c) 2013 Elsevier Ltd. All rights reserved

    Use of PBPK Modeling to Evaluate the Performance of Dissolv It, a Biorelevant Dissolution Assay for Orally Inhaled Drug Products

    Get PDF
    The dissolution of inhaled drug particles in the lungs is a challenge to model using biorelevant methods in terms of (i) collecting a respirable emitted aerosol fraction and dose, (ii) presenting this to a small volume of medium that is representative of lung lining fluid, and (iii) measuring the low concentrations of drug released. We report developments in methodology for each of these steps and utilize mechanistic in silico modeling to evaluate the in vitro dissolution profiles in the context of plasma concentration–time profiles. The PreciseInhale aerosol delivery system was used to deliver Flixotide aerosol particles to DissolvIt apparatus for measurement of dissolution. Different media were used in the DissolvIt chamber to investigate their effect on dissolution profiles, these were (i) 1.5% poly­(ethylene oxide) with 0.4% l-alphaphosphatidyl choline, (ii) Survanta, and (iii) a synthetic simulated lung lining fluid (SLF) based on human lung fluid composition. For fluticasone proprionate (FP) quantification, solid phase extraction was used for sample preparation with LC–MS/MS analysis to provide an assay that was fit for purpose with a limit of quantification for FP of 312 pg/mL. FP concentration–time profiles in the flow-past perfusate were similar irrespective of the medium used in the DissolvIt chamber (∼0.04–0.07%/min), but these were significantly lower than transfer of drug from air-to-perfusate in isolated perfused lungs (0.12%/min). This difference was attributed to the DissolvIt system representing slower dissolution in the central region of the lungs (which feature nonsink conditions) compared to the peripheral regions that are represented in the isolated lung preparation. Pharmacokinetic parameters (Cmax, Tmax, and AUC0‑∞) were estimated from the profiles for dissolution in the different lung fluid simulants and were predicted by the simulation within 2-fold of the values reported for inhaled FP (1000 μg dose) administered via Flixotide Evohaler 250 μg strength inhaler in man. In conclusion, we report methods for performing biorelevant dissolution studies for orally inhaled products and illustrate how they can provide inputs parameters for physiologically based pharmacokinetic (PBPK) modeling of inhaled medicines

    Deuterium substitutions in the L-DOPA molecule improve its anti-akinetic potency without increasing dyskinesias

    No full text
    Treatment of Parkinson's disease is complicated by a high incidence of L-DOPA-induced dyskinesias (LID). Strategies to prevent the development of LID aim at providing more stable dopaminergic stimulation. We have previously shown that deuterium substitutions in the L-DOPA molecule (D3-L-DOPA) yield dopamine that appears more resistant to enzymatic breakdown. We here investigated the effects of D3-L-DOPA on motor performance and development of dyskinesias in a rodent model of Parkinson's disease. Through acute experiments, monitoring rotational behavior, dose effect curves were established for D3-L-DOPA and L-DOPA. The equipotent dose of D3-L-DOPA was estimated to be 60% of L-DOPA. Subsequently, animals were treated with either the equipotent dose of D3-L-DOPA (5 mg/kg), the equivalent dose of D3-L-DOPA (8 mg/kg), L-DOPA (8 mg/kg) or vehicle. The equivalent dose of D3-L-DOPA produced superior anti-akinetic effects compared to L-DOPA in the cylinder test (p<0.05), whereas the equipotent dose of D3-L-DOPA produced an anti-akinetic effect similar to L-DOPA. Dyskinesias developed to the same degree in the groups treated with equivalent doses of D3-L-DOPA and L-DOPA. The equipotent dose of D3-L-DOPA induced fewer dyskinesias than L-DOPA (p<0.05). In conclusion, our study provides evidence for improved potency and reduced side-effects of L-DOPA by deuterium substitutions in the molecule. These results are of clinical interest since the occurrence of LID is related to the total L-DOPA dose administered. D3-L-DOPA may thus represent a novel strategy to reduce the total dose requirement and yet achieve an effective control of parkinsonian symptoms. (C) 2010 Elsevier Inc. All rights reserved

    Expression of vascular endothelial growth factor in the growth plate is stimulated by estradiol and increases during pubertal development

    No full text
    Longitudinal bone growth is regulated in the growth plate. At the end of puberty, growth velocity diminishes and eventually ceases with the fusion of the growth plate through mechanisms that are not yet completely understood. Vascular endothelial growth factor (VEGF) has an important role in angiogenesis, but also in chondrocyte differentiation, chondrocyte survival, and the final stages of endochondral ossification. Estrogens have been shown to up-regulate VEGF expression in the uterus and bone of rats. In this study, we investigated the relation between estrogens and VEGF production in growth plate chondrocytes both in vivo and in vitro. The expression of VEGF protein was down-regulated upon ovariectomy and was restored upon estradiol (E-2) supplementation in rat growth plates. In cultured rat chondrocyte cell line RCJ3.1C5.18, E-2 dose dependently stimulated 121 and 189 kDa isoforms of VEGF, but not the 164kDa isoform. Finally, VEGF expression was observed at both protein and mRNA levels in human growth plate specimens. The protein level increased during pubertal development, supporting a link between estrogens and local VEGF production in the growth plate. We conclude that estrogens regulate VEGF expression in the epiphyseal growth plate, although the precise role of VEGF in estrogen-mediated growth plate fusion remains to be clarified. Journal of Endocrinology (2010) 205, 61-68Bone and mineral researc

    Naltrexone modulates dopamine release following chronic, but not acute amphetamine administration : a translational study

    No full text
    The opioid antagonist naltrexone has been shown to attenuate the subjective effects of amphetamine. However, the mechanisms behind this modulatory effect are currently unknown. We hypothesized that naltrexone would diminish the striatal dopamine release induced by amphetamine, which is considered an important mechanism behind many of its stimulant properties. We used positron emission tomography and the dopamine D2-receptor radioligand [C-11]raclopride in healthy subjects to study the dopaminergic effects of an amphetamine injection after pretreatment with naltrexone or placebo. In a rat model, we used microdialysis to study the modulatory effects of naltrexone on dopamine levels after acute and chronic amphetamine exposure. In healthy humans, naltrexone attenuated the subjective effects of amphetamine, confirming our previous results. Amphetamine produced a significant reduction in striatal radioligand binding, indicating increased levels of endogenous dopamine. However, there was no statistically significant effect of naltrexone on dopamine release. The same pattern was observed in rats, where an acute injection of amphetamine caused a significant rise in striatal dopamine levels, with no effect of naltrexone pretreatment. However, in a chronic model, naltrexone significantly attenuated the dopamine release caused by reinstatement of amphetamine. Collectively, these data suggest that the opioid system becomes engaged during the more chronic phase of drug use, evidenced by the modulatory effect of naltrexone on dopamine release following chronic amphetamine administration. The importance of opioid-dopamine interactions in the reinforcing and addictive effects of amphetamine is highlighted by the present findings and may help to facilitate medication development in the field of stimulant dependence
    • …
    corecore