16 research outputs found

    USCID water management conference

    Get PDF
    Presented at Upgrading technology and infrastructure in a finance-challenged economy: a USCID water management conference held on March 23-26, 2010 in Sacramento, California.Due to multiple impacts being placed on the James Irrigation District (District) water supply, a study was performed to understand if the District could sustain its current operations. It was determined that the practices could continue but it would require capitally intensive improvements to the Districts infrastructure. Planned improvements include the construction of recharge basins for sustainability, installation of up to 16 groundwater wells and pumps, basin construction, pipeline installation, and construction of flow control and pumping structures. The improvements were estimated to cost approximately 9,000,000;acosttoohighfortheDistricttofundontheirown.Becauseoftheurgencyoftheproject,TheDistrictexploredmultipleopportunitiestofundtheproject.Thisincludedapplyingforloans,applyingforgrants,raisingwaterrates,andraisinglandassessments;allatthesametime.ToobtainloanmoneytheDistrictappliedforfundsthroughProposition82,distributedbytheDepartmentofWaterResources(DWR).Atthissametime,thedistrictpursuedloansthroughlocalbanks,whichprovidedachallengeconsideringtheunstablebankingindustry.Manycomponentsoftheprojectareproposedtobebuiltusinggrantfunding.FirstwasaChallengeGrantasprovidedbyUnitedStatesBureauofReclamationâ€Čs(USBR)Water2025program;providing9,000,000; a cost too high for the District to fund on their own. Because of the urgency of the project, The District explored multiple opportunities to fund the project. This included applying for loans, applying for grants, raising water rates, and raising land assessments; all at the same time. To obtain loan money the District applied for funds through Proposition 82, distributed by the Department of Water Resources (DWR). At this same time, the district pursued loans through local banks, which provided a challenge considering the unstable banking industry. Many components of the project are proposed to be built using grant funding. First was a Challenge Grant as provided by United States Bureau of Reclamation's (USBR) Water 2025 program; providing 300,000. Next was the USBR Field Services program; providing 25,000.Approximately25,000. Approximately 50,000 was utilized from the DWR Local Groundwater Assistance Program. In addition to these funds, Recovery Act funding became available for drought relief, where the District could obtain roughly $1,500,000. To generate further income the District approved a water rate increase. It was at this time when it became apparent that the Districts revenue source had become out of balance. The Land assessments were not enough to cover the operational overhead of the District. To rectify this issue, land assessments would need to be raised. This would require a proposition 218 election, which has been pursued. The intention of this paper is to discuss the multiple funding sources available to the District, how they were utilized, and problems that have been encountered

    Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone

    Get PDF
    Fault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging-wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP-2). We present observational evidence for extensive fracturing and high hanging-wall hydraulic conductivity (∌10−9 to 10−7 m/s, corresponding to permeability of ∌10−16 to 10−14 m2) extending several hundred meters from the fault's principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP-2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging-wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off-fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation

    Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand

    Get PDF
    <p>During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5–893.2 m Measured Depth (MD). Continuous sampling and meso- to microscale characterisation of whole rock cuttings established that, in sequence, the borehole sampled amphibolite facies, Torlesse Composite Terrane-derived schists, protomylonites and mylonites, terminating 200–400 m above an Alpine Fault Principal Slip Zone (PSZ) with a maximum dip of 62°. The most diagnostic structural features of increasing PSZ proximity were the occurrence of shear bands and reduction in mean quartz grain sizes. A change in composition to greater mica:quartz + feldspar, most markedly below c. 700 m MD, is inferred to result from either heterogeneous sampling or a change in lithology related to alteration. Major oxide variations suggest the fault-proximal Alpine Fault alteration zone, as previously defined in DFDP-1 core, was not sampled.</p

    Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone

    Get PDF
    International audienceFault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging‐wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP‐2). We present observational evidence for extensive fracturing and high hanging‐wall hydraulic conductivity (∌10−9 to 10−7 m/s, corresponding to permeability of ∌10−16 to 10−14 m2) extending several hundred meters from the fault's principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP‐2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging‐wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off‐fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation
    corecore