96 research outputs found

    On the predictability of domain-independent temporal planners

    Get PDF
    Temporal planning is a research discipline that addresses the problem of generating a totally or a partially ordered sequence of actions that transform the environment from some initial state to a desired goal state, while taking into account time constraints and actions' duration. For its ability to describe and address temporal constraints, temporal planning is of critical importance for a wide range of real-world applications. Predicting the performance of temporal planners can lead to significant improvements in the area, as planners can then be combined in order to boost the performance on a given set of problem instances. This paper investigates the predictability of the state-of-the-art temporal planners by introducing a new set of temporal-specific features and exploiting them for generating classification and regression empirical performance models (EPMs) of considered planners. EPMs are also tested with regard to their ability to select the most promising planner for efficiently solving a given temporal planning problem. Our extensive empirical analysis indicates that the introduced set of features allows to generate EPMs that can effectively perform algorithm selection, and the use of EPMs is therefore a promising direction for improving the state of the art of temporal planning, hence fostering the use of planning in real-world applications.</p

    SUNNY-CP : a Sequential CP Portfolio Solver

    Get PDF
    International audienceThe Constraint Programming (CP) paradigm allows to model and solve Constraint Satisfaction / Optimization Problems (CSPs / COPs). A CP Portfolio Solver is a particular constraint solver that takes advantage of a portfolio of different CP solvers in order to solve a given problem by properly exploiting Algorithm Selection techniques. In this work we present sunny-cp: a CP portfolio for solving both CSPs and COPs that turned out to be competitive also in the MiniZinc Challenge, the reference competition for CP solvers

    Joint multi-field T1 quantification for fast field-cycling MRI

    Get PDF
    Acknowledgment This article is based upon work from COST Action CA15209, supported by COST (European Cooperation in Science and Technology). Oliver Maier is a Recipient of a DOC Fellowship (24966) of the Austrian Academy of Sciences at the Institute of Medical Engineering at TU Graz. The authors would like to acknowledge the NVIDIA Corporation Hardware grant support.Peer reviewedPublisher PD

    Fruit-Surface Flavonoid Accumulation in Tomato Is Controlled by a SlMYB12-Regulated Transcriptional Network

    Get PDF
    The cuticle covering plants' aerial surfaces is a unique structure that plays a key role in organ development and protection against diverse stress conditions. A detailed analysis of the tomato colorless-peel y mutant was carried out in the framework of studying the outer surface of reproductive organs. The y mutant peel lacks the yellow flavonoid pigment naringenin chalcone, which has been suggested to influence the characteristics and function of the cuticular layer. Large-scale metabolic and transcript profiling revealed broad effects on both primary and secondary metabolism, related mostly to the biosynthesis of phenylpropanoids, particularly flavonoids. These were not restricted to the fruit or to a specific stage of its development and indicated that the y mutant phenotype is due to a mutation in a regulatory gene. Indeed, expression analyses specified three R2R3-MYB–type transcription factors that were significantly down-regulated in the y mutant fruit peel. One of these, SlMYB12, was mapped to the genomic region on tomato chromosome 1 previously shown to harbor the y mutation. Identification of an additional mutant allele that co-segregates with the colorless-peel trait, specific down-regulation of SlMYB12 and rescue of the y phenotype by overexpression of SlMYB12 on the mutant background, confirmed that a lesion in this regulator underlies the y phenotype. Hence, this work provides novel insight to the study of fleshy fruit cuticular structure and paves the way for the elucidation of the regulatory network that controls flavonoid accumulation in tomato fruit cuticle
    corecore