
Computational Intelligence, Volume 59, Number 000, 2010

On the Predictability of Domain-Independent Temporal Planners

ISABEL CENAMOR

Computer Science Department, Universidad Carlos III de Madrid, Spain

MAURO VALLATI

School of Computing and Engineering, University of Huddersfield, UK

LUKÁŠ CHRPA

Department of Computer Science, Czech Technical University, Czech Republic &

Department of Theoretical Computer Science and Mathematical Logic,

Charles University in Prague, Czech Republic

Temporal planning is a research discipline that addresses the problem of generating a totally- or partially-

ordered sequence of actions that transform the environment from some initial state to a desired goal state, while tak-

ing into account time constraints and actions’ duration. For its ability to describe and address temporal constraints,

temporal planning is of a critical importance for a wide range of real-world applications. Predicting the performance

of temporal planners can lead to significant improvements in the area, as planners can then be combined in order to

boost the performance on a given set of problem instances.

This paper investigates the predictability of the state-of-the-art temporal planners by introducing a new set of

temporal-specific features, and exploiting them for generating classification and regression Empirical Performance

Models (EPMs) of considered planners. EPMs are also tested with regards to their ability to select the most

promising planner for efficiently solving a given temporal planning problem.

Our extensive empirical analysis indicates that the introduced set of features allows to generate EPMs that

can effectively perform algorithm selection, and the use of EPMs is therefore a promising direction for improving

the state-of-the-art of temporal planning, hence fostering the use of planning in real-world applications.

Key words: Automated Planning; Temporal Planning; Predicting Performance

iC 2010 The Authors. Journal Compilation iC 2010 Wiley Periodicals, Inc.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Huddersfield Research Portal

https://core.ac.uk/display/237463962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 1

1. INTRODUCTION

Predicting performance of solvers is an important research direction boosting

performance via per-instance solver selection as well as providing interesting in-

sights into aspects that affect solvers’ behaviour. Prominent examples of successful

application of performance predicting techniques can be found in combinatorial

search (Kotthoff, 2014), especially in SAT (Xu et al., 2008), ASP (Gebser et al.,

2011a), Classical Planning (Fawcett et al., 2014) and Abstract Argumentation (Cerutti

et al., 2014).

Predictions are possible by exploiting Empirical Performance Models (EPMs)

(Hutter et al., 2014a) which are built by: (i) observing performance of solvers on

a large set of training instances; (ii) extracting instance-specific features from each

training problem; (iii) learning a predictive model that maps features’ value with

observed performance. Each feature is either a number or a categorical value that

represents a property of the domain or problem model (e.g., the number of objects).

Predictions can then be exploited for selecting promising algorithms, or for combin-

ing algorithms into a portfolio (Rice, 1976).

EPMs are well established in AI, and have been considered in planning literature

since 1990s. Fink (1998) exploited problems size feature for predicting runtime

through linear regression, Howe et al. (1999) used five features for predicting the

performance of six planners, the subsequent work by Roberts et al. (2008); Roberts

and Howe (2009) provided a larger set of features focused on problem models –

written in PDDL – statistics, and increased the number of considered planners. Most

2 COMPUTATIONAL INTELLIGENCE

recently, Cenamor et al. (2012, 2013) further expanded the feature set by including

information about the causal and domain transition graphs (Helmert, 2006). Fawcett

et al. (2014) considered also features computed by encoding the planning problem

as a SAT formula, and by analysing the search space topology. On slightly different

tasks, Gerevini et al. (2011) exploited planning features for predicting the length of

a makespan-optimal solution plan of a given problem, while Vallati et al. (2015) pro-

vided a features-based approach for improving the efficiency of case-base planning

systems. State-of-the-art planning EPMs are focused on classical planning, where

actions are executed instantly and no numerical or temporal aspects are consid-

ered, and they do not guarantee the ability to predict planners performance on more

expressive planning models. Real world planning applications, however, usually

require to reason also in terms of time constraints; actions are not executed instantly

and it might be necessary to run some actions concurrently. Hence, improvements in

temporal planning can have a significant impact on most of the planning applications

and foster the use of planning in real-world scenario.

In this paper, we:

• introduce a new set of features which are specific to problems dealing with durative

actions and temporal constraints,

• combine the introduced features with existing “classical” (propositional) features (Ce-

namor et al., 2016),

• use the features to generate classification EPMs that predict whether a planner

solve a given problem or not,

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 3

• use the features to generate regression EPMs that predict runtime of a planer on a

given problem,

• extract a small subset of representative set of features,

• exploit the EPMs for algorithm selection, i.e., selecting the appropriate planning

engine for a given problem.

Our extensive empirical analysis aims at demonstrating that i) the generated

EPMs are accurate, ii) the selected subset of features is representative, and iii) the

algorithm selection method based on the generated EPMs outperforms basic plan-

ning engines. Our analysis also provides insights on the state-of-the-art of temporal

planning systems that could be fruitfully exploited for improving future planning

engines.

The remainder of this paper is organised as follows. Firstly, we discuss related

work. We then provide the relevant background on automated planning. Section 4

introduces the set of exploited features. After that, we describe the experimental

settings and the framework exploited for the analysis. Then, we analyse the perfor-

mance of EPMs based on classification and regression and how the EPMs can be

exploited for algorithm selection. Finally, we give conclusions.

2. RELATED WORK

EPMs can be used to predict the performance of algorithms on previously unseen

inputs such as problem instances or parameters settings. One of the early applications

of EPMs was in SAT, where EPMs have been used for predicting how much time a

4 COMPUTATIONAL INTELLIGENCE

given algorithm will need to find a solution to a given formula (Hutter et al., 2007,

2014b).

Gomes and Selman (2001) conducted a theoretical and experimental study on

the parallel run of stochastic algorithms for solving computationally hard search

problems. Their work shows under what conditions running different stochastic al-

gorithms in parallel can give a computational gain over running multiple copies of

the same stochastic algorithm in parallel. The empirical hardness of combinatorial

problems, which refers to how difficult is to solve a given problem for a given algo-

rithm, has then been studied by Leyton-Brown et al. (2003). More recently, Leyton-

Brown et al.’s work was extended to create models that are able to predict the runtime

of algorithms solving uniform random 3-SAT problems, and the resulting framework

was called SATzilla (Xu et al., 2008). SATzilla, which has then been extended for

dealing with many different SAT problems, is one of the most successful portfolios

at the state of the art, and it has been awarded in many tracks and editions of the

SAT competition.1 By extracting information from SAT instances, under the form of

features, it predicts the runtime of algorithms by using EPMs; on the basis of such

predictions, SATzilla selects the most promising solvers to be executed on the given

SAT instance.

Another successful portfolio-based approach for SAT is ISAC (Malitsky, 2014),

which exploits a pool of different configurations of the same solver. Given a previ-

ously unseen instance, ISAC exploits EPMs for selecting the most suitable configu-

ration, in order to minimise the expected runtime.

1http://www.satcompetition.org

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 5

Another area in which EPMs and portfolios approaches has been extensively

studied is Answer Set Programming (ASP). A prominent example is Claspfolio

(Gebser et al., 2011b), which exploits regression-based EPMs for selecting, among

a range of predefined configurations of the well-known ASP solver Clasp (Gebser

et al., 2007), the best configuration to minimise the runtime on a given ASP in-

stance. Predictions are made according to a set of features that are extracted from

the considered ASP problem. An improved version of Claspfolio, called Claspfolio

2 (Hoos et al., 2014), provides a modular architecture that extends the provided set of

techniques by integrating new approaches for extracting features, predicting solvers’

performance and combining solvers into a portfolio.

Portfolio approaches have been studied and exploited also in classical planning.

BUS (Howe et al., 1999) is the first approach in which a static portfolio has been

tested and implemented for solving planning problems. The authors tested the per-

formance of six planners on over 200 problems (all the available benchmarks at

that time). According to the observed performance, they then identified a suitable

control strategy for combining weaknesses and strengths of the considered planners.

Other well-known examples of static portfolios for classical planning include PbP

(Gerevini et al., 2014), Fast Downward Stone Soup (Helmert et al., 2011), and

Cedalion (Seipp et al., 2015). These approaches, after observing the performance

of a set of planners on training instances, generate a single portfolio that is then used

for solving any (previously unseen) planning problem.

EPMs in classical planning have been exploited also for dynamic planning port-

folios that combine most promising planners into portfolios according to a given

planning instance. IBaCoP2 (Cenamor et al., 2014), which is a good example of a

6 COMPUTATIONAL INTELLIGENCE

dynamic planning portfolio approach, exploits EPMs for selecting the most promis-

ing planners (from a given set) for maximising the quality of the solution plans.

IBaCoP2 took part in the 2014 edition of the International Planning Competition

(IPC), and won the sequential satisficing track (Vallati et al., 2015). Another dynamic

portfolio approach, AllPaca (Malitsky et al., 2014), took part in the optimal track of

the same competition. AllPaca is a portfolio that selects the most promising optimal

planner to run on a given planning task. A comparison of static and dynamic portfolio

techniques, focused on optimal planning, has been recently done by Rizzini et al.

(2017).

3. AUTOMATED PLANNING

Automated planning deals with finding a (partially or totally ordered) sequence

of actions transforming the environment from a given initial state to a desired goal

state (Ghallab et al., 2004).

3.1. Classical Planning

Classical planning assumes a static, deterministic and fully observable environ-

ment where action effects are instantaneous.

In the classical representation, the environment is specified via first-order logic

predicates. States of the environment are represented as sets atoms, fully grounded

predicates. A planning operator o = (name(o), pre(o), eff−(o), eff+(o)) is specified

such that name(o) = op name(x1, . . . , xk) (op name is a unique operator name and

x1, . . . xk are variable symbols (arguments) appearing in the operator), pre(o) is a

set of predicates representing the operator’s preconditions, eff−(o) and eff+(o) are

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 7

sets of predicates representing the operator’s negative and positive effects. Actions

are fully grounded instances of planning operators. An action a = (pre(a), eff−(a),

eff+(a)) is applicable in a state s if and only if pre(a) ⊆ s. Application of a in s (if

possible) results in a state (s \ eff−(a)) ∪ eff+(a).

A planning domain is specified via sets of predicates and planning operators.

A planning problem is specified via a planning domain, initial state and set of goal

atoms. A solution plan is a sequence of actions such that a consecutive application

of the actions in the plan (starting in the initial state) results in a state that satisfies

the goal.

3.2. Temporal Planning

[Figure 1 about here.]

Temporal planning extends classical planning by incorporating the notion of

time. Action application (or execution) takes time and thus action effects might

not be instantaneous. In this paper, we consider the restricted form of temporal

planning supported in PDDL 2.1 (Fox and Long, 2003) since it is supported by a

range of planning engines. Alternatively, temporal planning tasks can be modelled,

for instance, in NDDL (Bedrax-Weiss et al., 2005) and solved by using the EUROPA

framework (Frank and Jónsson, 2003).

A durative planning operator o = (name(o), dur(o), preS(o), preE(o), preA(o),

eff−S (o), eff+S (o), eff−E(o), eff+E(o)) is specified such that name(o) = op id(x1, . . . , xk)

(op id is a unique operator name and x1, . . . xk are variable symbols (arguments)

appearing in the operator), dur(o) represent duration of o’s application, preS(o),

preE(o), preA(o) are sets of predicates representing “at start”, “at end” and “over all”

8 COMPUTATIONAL INTELLIGENCE

conditions respectively, and eff−S (o), eff+S (o), eff−E(o), eff+E(o) are sets of predicates

representing “at start” negative and positive effects and “at end” negative and pos-

itive effects respectively. Durative actions are fully grounded instances of durative

planning operators. A durative action a is applicable in a state s and time t if and

only if preS(a) ∈ s in t, preE(a) ∈ s in t+ dur(a) and preA(a) ∈ s in [t, t+ dur(a)].

The result of application (or execution) of a in s and t (if possible) is such that

eff−S (a) becomes false in s and t, eff+S (a) becomes true in s and t, eff−E(a) becomes

false in s and t+ dur(a) and eff+E(a) becomes true in s and t+ dur(a).

Solution plan is a list of pairs 〈action,time〉 such that each (durative) action is

applicable in a current state (starting in the initial state) at time and the result of

application of all the actions is a state satisfying the goal.

An example of a temporal operator from the Driver-Log domain is provided

in Figure 1. The operator (LOAD-TRUCK) represents loading of an object ?obj into

a truck ?truck at a location ?loc.

4. PROBLEM CHARACTERISATION

Each planners’ performance is predicted by using planning features, which are

extracted from the domain and problem specifications. In a nutshell, a feature is

a numerical value (either integer or real) that summarises a specific property of a

considered specification. A vector of planning features, which provides a succinct

yet informative description of a problem instance, is provided to a predictive model.

The predictive model, which is learnt accordingly to the observed performance of

the given planner on a training set of problem instances, maintains information about

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 9

what features are beneficial or detrimental for the given planner and thus is able to

predict its runtime on a previously unseen problem instance.

In this work, we build on existing features introduced for classical planning, and

we introduce 71 new features that are specific for temporal planning problems. In

total, 139 features are extracted for each problem. The following types of features

are extracted:

• PDDL features that are extracted directly from a PDDL domain and problem

specification

• SAS+ features (Bäckström and Nebel, 1995) that are extracted from a SAS+ trans-

lation of a PDDL domain and problem specification provided by Fast Downward,

and its temporal version Temporal Fast Downward (TFD) (Eyerich et al., 2012).

• SAT features that are extracted by ITSAT (Rankooh et al., 2012), which translates

a PDDL domain and problem specification into a single SAT formula.

Other approaches such as Torchlight (Hoffmann, 2011) could be a valuable source

of features. However, they do not support models that include temporal reasoning,

and cannot be exploited in this work.

The considered types of features divided into propositional and temporal are

described in detail in the following subsections.

4.1. Propositional PDDL

We consider 8 features, listed in Table 1, that are extracted by considering both

domain and problem specifications in PDDL. They are a subset of features proposed

by Roberts et al. (2008), namely: number of PDDL requirements, number of types,

10 COMPUTATIONAL INTELLIGENCE

objects, predicates, facts in the initial state, number of (non-durative) actions and

axioms. Such features can be extracted from classical planning problems and thus

are not temporal specific.

[Table 1 about here.]

4.2. Temporal PDDL

This class of features, listed in Table 2, considers PDDL elements that appear

in temporal models only. For instance, we consider the presence of numeric fluents

representing duration of actions, the minimum, maximum, average and the standard

deviation of arity of these fluents, the number of conditions and effects that should

be fulfilled at the start, in the end or during actions execution (at_start, at_end

and over_all). By considering the temporal aspects of PDDL models, it can be

derived, for example, if some actions have be run in parallel (one actions achieves

an effect at start of its execution and removes it after its execution finishes while

another action requires that “effect” during its execution). In total, we consider 31

features in this class.

[Table 2 about here.]

Considering the example operator provided in Figure 1, it can be seen, for exam-

ple, that it has one at_start effect, one over_all condition.

4.3. General SAS+

Many state-of-the-art domain-independent planners exploit SAS+ representation

(Bäckström and Nebel, 1995), which can be obtained from PDDL models by the

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 11

Fast Downward framework (Helmert, 2006). Hence, we considered features that can

be derived from the SAS+ encoding, which, contrary to predicate-centric PDDL, is

object-centric.

The object-centric property of the SAS+ encoding can be exploited to derive

Causal Graph (CG) and Domain Transition Graph (DTG). CG encodes information

about dependencies between values of state variables, while DTG – generated for

each variable – encodes how actions can affect the value of the specific variable. In

total, 49 features belong to this class. The non-temporal SAS+ features have already

been investigated by Cenamor et al. (2012, 2013), and are considered by IBaCoP2

(Cenamor et al., 2014, 2016). Fawcett et al. (2014) also considered a subset of these

features in their investigation.

Table 3 shows the list of features extracted from the CG of a problem instance.

Table 4 provides the list of the features extracted From the DTGs.

[Table 3 about here.]

[Table 4 about here.]

4.4. Temporal SAS+

The SAS+ formalism, originally designed for encoding classical planning prob-

lems, has been recently extended for temporal problems (Eyerich et al., 2012). The

main difference is in domain transition graphs – called temporal domain transition

graphs – that store information about temporal conditions and effects. As previously

introduced, in temporal planning problems, conditions can be required to be satisfied

at start, overall or at end of action execution. In total, 30 features are extracted from

12 COMPUTATIONAL INTELLIGENCE

the temporal SAS+ encoding obtained by Temporal Fast Downward (Eyerich et al.,

2012). The features are listed in Tables 5 and 6. Several features are “auxiliar”

variables, which Temporal Fast Downward needs for pre-processing purposes: it

uses multi-valued state variables and handles logical dependencies and arithmetic

subterms via axioms.

[Table 5 about here.]

[Table 6 about here.]

4.5. SAT Size

This class of features contains information about the size of a problem encoded in

SAT. The only SAT-based solver which is able to handle temporal planning problems

is ITSAT (Rankooh et al., 2012). However, for the sake of runtime optimisation,

ITSAT (Rankooh et al., 2012), which is so far the only SAT-based solver handling

temporal planning problems, generates a file that includes considered SAT variables

and some basic relations between them. By using techniques from SATzilla (Xu

et al., 2008), we can extract from that file information about the problem size in

SAT. In total, 13 features are considered in this class. Details are given in Table 7.

[Table 7 about here.]

4.6. Feature Extraction

Feature extraction cutoff time was set to 100 seconds and the RAM has been set

to 4 GB. Using too much CPU time for extracting features reduces their usefulness.

In the light of the fact that planners tend to solve problems quickly or not at all

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 13

(Howe and Dahlman, 2002), it might be better to select a not-so-good planner than

spending too much time to extract all features (and select a better planner).

Table 8 shows the average and maximum time required for extracting the dif-

ferent sets of features as well as the percentage of problems in which the extraction

was successfully completed (i.e., within the time and memory bounds). Whereas

Propositional PDDL feature extraction requires negligible time, Temporal PDDL

feature extraction requires around 10 seconds. On the other hand, extracting SAS+

features is usually more expensive in tens of seconds. SAT size feature extraction, on

the other hand, takes about 1-2 seconds. SAS+ features as well as SAT size features

have not been computed, due to timeout or running out of memory, in approximately

20% of the problems considered in our experimental analysis.

[Table 8 about here.]

5. EXPERIMENTAL SETTINGS

Our experimental analysis aims at assessing how classification and regression

approaches can cope with the problem of algorithm selection for temporal planning

problems.

• Classification approaches classify planning problems into a single category, ac-

cording to the fact whether the planner will solve the problem or not.

• Regression techniques model each planners’ runtime.

When dealing with EPMs, a number of decisions have to be taken. Firstly, it

is pivotal to select a number of suitable planners; such planners will be used for

evaluating the predicting capabilities of classification and regression approaches.

14 COMPUTATIONAL INTELLIGENCE

Secondly, benchmarks have to be gathered for both training and testing purposes.

Thirdly, features should be extracted on which EPMs perform predictions. Finally,

appropriate metrics have to be considered for measuring the planners’ performance.

In the next sections, we describe the decisions taken on the mentioned regards. The

experimental framework exploited in this analysis is shown in Figure 2. It includes

the relevant input and the two main steps, namely training and testing.

[Figure 2 about here.]

Planners and feature extractors were run on a cluster with Intel XEON 2.93 Ghz

nodes with 8 GB of RAM each, using Linux Ubuntu 12.04 LTS. Planners had a

cutoff time of 1800 seconds and a maximum of 4 GB RAM, while feature extractors

has a cutoff time of 100 seconds and a maximum of 4 GB RAM.

5.1. Planners

Planning systems that can deal with temporal problems are not as numerous as

classical planning solvers. Initially, 12 planners were considered, however, those

with very poor performance on training problems (in terms of coverage) were re-

moved. Models for planners with poor coverage on training instances result in a

trivial “always negative” EPM, which does always predict that the planner will not

solve a given problem is usually built (and is accurate). Such an EPM just never con-

siders these planners in the algorithm selection process. Hence, for our experiments

we have considered 8 state-of-the-art temporal planners that accommodate various

techniques, namely:

• LPG-td (Gerevini et al., 2003) exploits stochastic local search in the space of

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 15

planning graphs, and is able to generate solutions of increasingly good quality. For

the sake of this analysis, as we are interested in runtime performance, LPG was

stopped after first solution was found, and seed was fixed.

• POPF2 (Coles et al., 2010) a Forward-Chaining Partial Order Planner that exploits

forward-chaining search, expanding nodes according to a partial-order rather than

the conventional total-order.

• Yahsp2 and Yahsp2-MT (Vidal, 2011) compute look-ahead plans from delete-

relaxed plans and use them in the state-space heuristic search.

• Temporal Fast Downward (TFD) (Eyerich et al., 2012) is based on the Fast

Downward planning system and uses an adaptation of the context-enhanced addi-

tive heuristic to guide the search in the temporal state space induced by the given

planning problem.

• ITSAT (Rankooh et al., 2012) translates the problem into a sequence of SAT

instances, corresponding to different time horizons considered for solving the

problem instance.

• Yahsp3 and Yahsp3-MT (Vidal, 2014) are latest version of the Yahsp planner,

which took part into IPC 2014.

Two different versions (four planning engines) of Yahsp have been included,

because it performed well in both IPC 2011 and IPC 2014 (Yashp 3-MT won the

temporal track of the IPC 2014). Due to the fact that an EPM is built for each planner,

in order to predict its performance, we do not expect the selection of four different

engines based on the same planner having an impact on the experimental evaluation.

Instead, it may shed some light on the progress of the field.

16 COMPUTATIONAL INTELLIGENCE

5.2. Benchmarking

We considered temporal planning problems gathered from the temporal tracks

of the last editions of the IPC2, namely 2002, 2004, 2006, 2008, 2011 and 2014.

Problems not solved by at least one planner were not included in the training set.

EPMs have been trained on benchmarks from IPCs 2008 and 2011: in total, 25

domain models and 630 problems have been considered as seen in Table 9. In the

IPC-2008, there are two domains having ADL features (in blue) and three domains

with numeric-fluents (in green). The IPC-2011 does not include any domain with

numeric-fluents nor ADL features.

[Table 9 about here.]

For testing purposes, we designed three different testing sets that are described

in Table 10.

• The IPC 2014 testing set, which includes all the benchmarks from the temporal

track of IPC 2014.

• The Known testing set, which considers domains that are also included in the

training set. Testing problem instances are different from training ones.

• The Unknown testing set, that includes domains that are not present in the training

set.

The IPC 2014 set aims at providing a general overview of the performance of

the trained models. The other two testing sets have been designed for evaluating the

generalisation ability of trained models on either completely new domain models

(Unknown), or new problem instances from already seen domain models (Known).

2http://icaps-conference.org/index.php/main/competitions

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 17

Whenever possible, we considered different encodings of the same domain. Specif-

ically, we considered domain models encoded using STRIPS features only, including

numerical constraints, and exploiting ADL features.

[Table 10 about here.]

Having specified the training and testing benchmarks, in this analysis we com-

pare the performance of EPMs using:

• A standard 10-fold cross-validation approach on a uniform random permutation of

the training instances.

• the three different testing sets: IPC 2014, Unknown, and Known.

5.3. Groups of Features

In order to evaluate how different features affect the ability to predict plan-

ners’ performance, we consider different groups of features. Features have been

grouped according to either the encoding they refer to, or their temporal-specificity,

and are summarised in Table 11. All indicates the whole set of computed features

(139). PDDL refers to the 49 Features including Propositional, Temporal PDDL, and

Problem size. SAS+ considers the 90 features that are extracted by considering the

SAS+ encoding only. nT (Non-Temporal) 68 features which are typical of classical

planning. Features are gathered from Propositional PDDL and General SAS+ sets.

The T (Temporal) set considers the 71 features that are extracted by considering

Temporal PDDL and Temporal SAS+ encoding. We also consider the Sel set, that

includes a small number of relevant features that have been automatically selected.

Feature selection was done by looking at a J48 decision tree (Quinlan, 1993), which

18 COMPUTATIONAL INTELLIGENCE

is built for predicting the solvability of the training instances, by considering plan-

ners as an input information. Given the model, we select the features used in nodes

placed in the top fifth of the decision tree. They are believed to be important since,

according to the J48 algorithm, they provide the best information gain (Quinlan,

1993). This can be seen as a supervised method for feature selection. Considering

top nodes avoids potential overfitting, as it may arise in lower-level leaves of the

tree that are used for classifying a very few instances. The accuracy of the EPM

generated by the J48 algorithm is good, approximately 91%. Therefore, we believe

information extracted from such a model is relevant. The resulting automatically

generated set of features, Sel, includes 11 features: 1 from the Propositional PDDL

set, 7 from Temporal PDDL, 2 from General SAS+ and 1 from Temporal SAS+.

In particular, the selected features are: the number of predicates included in the

domain definition (Propositional PDDL); the number of durative actions, the number

of actions that use numeric fluents for representing their duration, the average arity

of these fluents, the minimum number of conditions that have to hold at start

of action execution, the maximum number of conditions that have to hold during

action execution (over all), and the minimum and maximum number of effects

that become true after action execution finishes (at end) (Temporal PDDL); the

maximum number of outgoing edges of the causal graph, maximum number of

incoming edges in the domain transition graph (General SAS+) and; the number of

translated durative actions (Temporal SAS+). The selection process emphasises the

importance of temporal features (8 out of 11 features are taken from temporal sets);

they tend to appear earlier in the J48 decision tree and are thus deemed as being

more informative. On the other hand, this distribution of selected features across

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 19

SAS+ and PDDL sets requires to extract both PDDL and SAS+ sets of features (the

latter is more computationaly expensive).

[Table 11 about here.]

6. EXPERIMENTAL RESULTS

Firstly, we assessed the performance of various classification and regression

models (45 different algorithms in total), using the WEKA tool (Hall et al., 2009).

We considered linear regression, neural networks, Gaussian processes, decision trees,

regression methods, clustering, support vector machine and rule-based techniques.

6.1. Classification

For exploiting a classification approach, a different predictive model is built per

planner. Such a predictive model has to classify the problem instance according

to the fact whether the planner will find its solution or not. Rotation Forest (Ro-

driguez et al., 2006) performed best among considered classification approaches on

the training instances, and is exploited hereinafter. Results are presented in terms of

accuracy: it is the number of correct predictions made divided by the total number

of predictions made, multiplied by 100 to obtain percentage.

Table 12 shows the results of the trained predictive models on training instances.

As expected, performance on training instances is good, regardless of the considered

set of features. Usually, any set of features achieves an accuracy of approximately

90%. We conjecture that each class includes at least a few informative features, and

that some of the included domains have a large number of corresponding problem

20 COMPUTATIONAL INTELLIGENCE

instances. Larger number of problem instances can positively influence the perfor-

mance of predictive models because, on a limited and generally coherent set of

instances from the same domain, a given planner tend to perform uniformly. It is

therefore easier, under such circumstances, for a predictive model to predict the

planner’s behaviour.

[Table 12 about here.]

The two considered classes (solved, unsolved) have been balanced among all the

planners on the training instances; the maximum difference is 40− 60%. In order to

achieve this class balance, we assessed the initial distribution between classes and,

in imbalanced cases, randomly over-sampled the minority class. This approach is

common-practice in machine learning (He and Garcia, 2009). The exploitation of

training sets with very imbalanced classes will lead to the generation of trivial EPMs

that classify all the instances as members of the most represented class.

Summarising, the results in Table 12 clearly indicate that on training instances,

the EPMs are able to identify relevant features and combine them for predicting

solvability of problems.

Table 13 shows the performance of classification EPMs on the considered testing

sets. The analysis of the results on the IPC 2014 set provides a number of interesting

insights: (i) the PDDL set leads in 5 out of 8 cases to the best prediction results.

(ii) using either temporal or non-temporal set of features achieves similar prediction

results; (iii) using all the features together, on the other hand, does not guarantee

the best performance; (iv) TFD and Yahsp3 behaviours are hard to predict on test-

ing instances, and (v) the set of selected features usually achieves good prediction

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 21

results, particularly considering that only 11 features are considered for a domain-

independent prediction. We observed that TFD and Yahsp2/3 show a very different

behaviour on training and testing problems, possibly because of new domains and/or

significantly larger instances used in the testing set. TFD translates the PDDL plan-

ning problem into SAS+, and then solves the SAS+ problem; the translation phase

can be slow and, sometimes, requires a huge amount of memory. On large instances,

as those used in the IPC 14, it happens that the translation step fails due to lack of

available memory (4 GB); this is clearly hard to predict for an EPM that has been

trained on smaller instances, where this issue does rarely arise. Both planners have

issues in dealing with problems that need to reason with concurrency in order to be

solved. In fact, on the benchmarks of IPC 2014, TFD is not able to solve problems

from 5 domains, while Yahsp3 is not able to provide any solution for instances from

3 domains.

[Table 13 about here.]

Considering all the features at the same time is not always the best option. We

believe this is mainly because of introduced “noise”. Our hypothesis is supported by

the results achieved using the 11 selected features: they represent a (hopefully) noise-

free set of features, and their exploitation achieves results close to those achieved

when using the All set. The considered sets have some overlap, and this partially

explains why in some cases they show similar performance.

Table 13 also shows the results achieved by trained EPMs on the Known and

Unknown test sets. We observed that on the Known set, performance is usually less

accurate than those achieved on the IPC 2014 testing set. We believe this is due to

22 COMPUTATIONAL INTELLIGENCE

the fact that the domain models are encoded using different sets of PDDL features.

In many cases, features introduced in domains that are included in the testing set

are not supported by planners. Therefore, predictions are less accurate because, even

though many features have values that are similar to some instances included in

the training set, the final outcome is completely different. This is also reflected in

the very different performance of the considered sets of features. The Known set is

significantly smaller than the other sets: from this perspective, mistakes have a much

larger impact on the overall evaluation.

ITSAT is the only planner that has very predictable performance on the Known

testing set. On the contrary, LPG has quite unpredictable performance on the Known

set: for instance, the use of SAS+ and nT features sets leads to around 30% accuracy.

This may be due to the intrinsic randomness of the planning approach exploited by

LPG: it is based on stochastic local search. On the other hand, EPMs generated

for predicting the performance of Yahsp2, Yahsp3, and TFD tend to have similar

accuracy on all the considered testing sets.

To investigate how importance of the features varies between training and testing

problems, we applied our selection process on the EPMs built by considering only

testing instances. Similarly to the selection process done on training problems, 11

features are selected. One of them is exactly the same: the minimum number of

effects that become true when action execution finishes (at_end) (PDDL). Other

six features selected according to the testing instances are strongly related to those

extracted on training problems, as they consider similar aspects of the problem,

but from slightly different perspective: maximum arity of numeric fluents (PDDL),

minimum number of at_start conditions (PDDL), minimum duration of an ac-

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 23

tion (PDDL), standard deviation of incoming edges of the domain transition graph

(SAS+), number of variables (SAS+), and number of relevant actions (SAS+), Fi-

nally, the remaining features are completely different from those included for the

EPMs built considering training instances. This is the case of: number of PDDL

requirements (PDDL), number of facts in the initial state (PDDL), ratio between the

weight and the edges in the causal graph (SAS+), and the ratio between edges and

variables of domain transition graph (SAS+).

Overall, considering also the results achieved by the EPMs exploiting the Sel

set of features, this analysis confirms their informativeness. It also indicates that the

technique we designed for selecting informative features is reasonably accurate, in

the sense that it selects features that generalise on different benchmarks.

6.2. Regression

Regression EPMs predict the runtime a planner needs to solve a given problem

instance. Runtimes of considered planners on selected benchmarks vary between

0 to 1800 CPU seconds. Given the large variations in CPU-times, we trained our

regression models to predict the log-runtime rather than absolute time: this has

demonstrated to be effective in similar circumstances (Hutter et al., 2014a). To pre-

dict when a planner will not be able to solve a given problem instance, we assigned

a default value of 2000 CPU-time seconds to unsolved instances. In this way, any

predicted value between 1800 and 2000 CPU-time seconds will be considered as

that the EPM identified that the given instance will not be solved.

Performance is measured in terms of Root Mean Squared Error (RMSE). Exper-

imentally, we observed that the Decision Tables algorithm (Kohavi, 1995) generates

24 COMPUTATIONAL INTELLIGENCE

– on average – the most accurate predictive models, and we will exploit this approach

for the remainder of this experimental analysis.

Table 14 shows the results, in terms of RMSE, of the best regression models

with 10-fold cross validation on a uniform random permutation of the 630 train-

ing instances. Firstly, we noticed that predicting algorithms runtime is challenging,

according to the RMSE values. On the other hand, it is well-known that RMSE

is sensitive to occasional large errors (e.g., predicting an instance as unsolvable

although it can be solved quickly), thus actual predictions can be better, on average.

[Table 14 about here.]

Table 15 shows the RMSE results achieved by the regression predictive models

on the three considered testing sets. Differently from the results of classification

EPMs, regression models are providing the most accurate predictions on the Known

test set. On the other test sets, regression models tend to perform similarly. However,

as for the classification models, ITSAT’s perfomance is the easiest to predict. On

the Known testing set, the RMSE goes below 1 because ITSAT does not solve the

vast majority of the problems, and therefore the EPM tends to predict very poor

performance.

[Table 15 about here.]

We noticed that the regression approach shows similar RMSE performance for

the TFD planner on training and testing instances. This was not the case for the

classification model. On the other hand, we observed that Yahsp-based systems show

a very different behaviour on the training and testing instances as in the classification

case. In particular, the behaviour of the MT versions are the most challenging to

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 25

predict. Since Yahsp-MT exploits a multi-threaded approach, it is possibly more

sensitive to small changes of the execution environment (e.g., operative system calls,

input/output delays). This has a limited impact on the ability of the planner in solving

instances, but makes the actual runtime harder to predict. A similar explanation can

be provided for the high error in the LPG predictions: LPG exploits a randomised

search algorithm that, in presence of domain models that are similar to those used in

training instances, lead the predictive model to make inaccurate estimations.

With regards to the different classes of features, using the Sel set often results in

the best regression EPMs since, very likely, this set is noise-free and very informa-

tive. We also observed that the features from the temporal set are very informative

and achieve prediction performance that is usually very close to the best.

6.3. Exploiting EPMs for Algorithm Selection

After evaluating prediction performance of the classification and regression EPMs,

we are in position to exploit them for performing on-line algorithm selection. In

particular, we tested the capability of EPMs as mechanisms for selecting the most

promising planner to exploit on a given (and previously unseen) testing instance. A

single planner is selected for solving each planning instance, and a cutoff time of

1800 second is allocated to the selected planner.

Classification EPMs are able to predict whether a given planner will solve a given

problem instance, or not. Therefore, they can be used to select planners in order to

maximise coverage, i.e. the number of solved instances. As a different classification

EPM is generated for each planning engine, the selection is performed as follows.

26 COMPUTATIONAL INTELLIGENCE

Among all the planners that are predicted to solve a given problem, the selected

planner corresponds to the EPM that showed the best accuracy on training instances.

Regression EPMs predict, for each planner, the runtime needed to solve a given

planning instance. The planner selected is the one predicted to be the fastest.

We compare the approaches by considering the IPC runtime score and the cov-

erage. The IPC score is defined as in the Agile track of the IPC 2014. For a planner

C and a problem p, Score(C, p) is 0 if p is unsolved, and 1/(1 + log10(Tp(C)/T ∗
p)),

where Tp(C) is the CPU-time needed by planner C to solve problem p and T ∗
p is the

CPU-time needed by the best considered planner, otherwise. The IPC score on a set

of problems is given by the sum of the scores achieved on each considered problem.

In terms of basic planners’ performance on the IPC 2014 testing set, Figure 3

shows the corresponding number of solved problems, with regards to CPU time.

Most of the planners are usually either solving instances quickly, or not at all. Ex-

ceptions are ITSAT and TFD that are able to solve a few instances in about 600

seconds and a few more instances in about 1400 seconds.

[Figure 3 about here.]

Table 16 shows the results, in terms of number of solved problems and IPC

runtime score achieved on the IPC 2014 test set by the classification and regressions

EPMs using different sets of features. In this analysis we ignore the CPU-time

needed for extracting features, as the main goal of this section is to evaluate the

ability of the generated EPMs to effectively select a suitable planner for a given

problem.

We focus on four groups of features: All, Sel, Temporal, and non-Temporal.

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 27

For algorithm selection, we are particularly interested in assessing the usefulness

of temporal-specific features and in evaluating the effectiveness of the small set of

selected features.

[Table 16 about here.]

For the sake of comparison, Table 16 includes the performance of the virtual

best solver (VBS) which represents an Oracle that selects always the best possible

planner for solving the specific problem, the two best basic solvers accordingly to

(C)overage (LPG) and IPC (S)core (Yahsp2), and a static portfolio (B4P), which

includes the best 4 planners according to coverage performance on testing instances:

LPG, Yashp2, Yashp3 and TFD. The solvers are ordered according to their coverage

(descending order) and each planner runs for 1/4 of the cutoff time (i.e., 450 seconds

per planner). Considering these additional systems – VBS, B4P and the best basic

solvers – provides a better and more complete understanding of the performance of

algorithm selection across the EPMs.

Both classification and regression EPMs achieve better coverage results than the

best basic solver (+11% and +32.5%, respectively). Performance achieved by using

the regression EPMs is very close to performance of the VBS and better than the

B4P.

It is useful to remind that the B4P has been configured by considering the per-

formance of planners on testing instances, while both regression and classification

EPMs have been trained on a different set of instances. From this perspective, the

proposed EPMs demonstrate ability to generalise, since they provide useful predic-

tion for performing algorithm selection on unseen instances, although we observed

28 COMPUTATIONAL INTELLIGENCE

that the regression EPMs outperform the classification EPMs, both in terms of cover-

age and IPC score. This is due to the fact that the classification EPMs do not estimate

the performance difference between solvers, so an error in the prediction might result

in selecting a planner that will not solve the problem. The regression EPMs consider

planners’ runtime. Therefore, a mistakenly selected planner usually needs a longer

execution runtime while a planner with extremely poor performance is very rarely

selected.

With regards to the considered sets of features, we noticed a very different be-

haviour of the classification and regression EPMS. Classification achieves the best

coverage performance when using the selected set of 11 features; the IPC score on

that set is close to the best one, which is achieved by using Temporal features. On

the other hand, the Sel set is not the most informative for algorithm selection through

regression; using the whole set of features – or even the set including only temporal

/ non temporal features – achieves better performance.

In Table 16 domains are listed according to the difficulty of their instances. In

this context, the smaller is the number of planners that can solve all the problems, the

more difficult the domain is. According to this intuitive definition, the less difficult

(easier) domain is Parking, since 6 planners solve all the problems, and all the

considered planners solve at least 6 instances. The two more difficult domains are

TMS, because only one planner is able to solve all its benchmark problems, and

TurnAndOpen, where 3 planners solve about 10 problems each. We conjecture that

the difficulty of domains play a pivotal role in algorithm selection. If a difficult

domain is included in the training set, it is easier for the EPM to correctly identify

the planner(s) to exploit on the corresponding testing instances. On the other hand,

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 29

if the domain is not considered in the training set, the capability of the EPMs-

based approach of selecting the good planner depends only on the informativeness

of features and generalisation.

Figure 4 provides an overview of the empirical difficulty of the testing domains

used in the IPC 2014, both from planning and instances perspective. The red line

(Solved Problems) represents the proportion of problems solved per domain. A value

of 1 indicates that all the planners are able to solve all the testing problems; on the

contrary, the value of 0 means that no planner can solve any of the testing problems.

Similarly, the green line (Planners) reports the planners’ perspective, as the propor-

tion of planners that can solve all the problems of a domain. Figure 4 clearly shows

that out of the considered domains, 4 are extremely difficult for the state-of-the-

art domain-independent planners. The difficulty of TMS and TurnAndOpen derives

from the fact that their problems need actions to be executed concurrently in order

to be solved.

[Figure 4 about here.]

Table 17 shows the results, in terms of number of solved problems and IPC

runtime score of the considered classification and regressions EPMs, using different

sets of features, on the Unknown and Known testing sets. On these testing sets, the

best basic solver according to either coverage or runtime, is LPG. LPG provides

better coverage results than the proposed classification and regression based algo-

rithm selection approaches. This is true also for the B4P static portfolio that, in fact,

includes LPG as well. The best basic planner and the static portfolio are selected

(configured) according to the performance of considered planners on the testing

30 COMPUTATIONAL INTELLIGENCE

instances, so they are exploiting information that is not available to the algorithm

selection approaches and that is not available before having the instances solved.

Algorithm selection approaches rely on a single (selected) planner for generating a

solution for a given planning problem; instead the B4P can fully exploit the available

CPU-time for running 4 planners for a considerable amount of time (LPG, Yashp2,

Yashp3 and TFD).

[Table 17 about here.]

Algorithm selection techniques aim to select planners that solve the given prob-

lem instances in minimum time. In the case of regression techniques, predicted-

to-be-fastest planners are selected in order to solve the given problem instance;

classification-based selection instead tries to identify a planner that will solve the

problem regardless of the expected runtime. However, as observed in our experi-

ments, the classification-based approaches underperform the regression approaches.

On the Unknown testing set, we observed that the algorithm selection approaches

are struggling with domains in which very few planners are able to solve some

instances. This is the case, for example, of the UMTS domain: the regression ap-

proaches tend to select LPG, that is not able to solve any problem. On such a test set,

we noticed that using – instead of a portfolio – a single planner that shows the best

coverage on training instances does not necessarily lead to the best results.

Analysing of importance of each features’ set, we made several observations.

The Sel set achieves good performance in the classification approach (see Table 16.

The only exception can be observed on the Unknown test set: in that case, despite

a remarkably high IPC score, the number of solved instances is significantly lower

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 31

than those achieved when exploiting different sets of features (see Table 17). On the

Unknown testing set the use of non-Temporal features leads to the best performance

of the classification EPMs approaches (see Table 17). Temporal features, on the

other hand, are useful for the regression approaches on the Unknown test sets (see

Table 17).

The results shown in Table 17 confirm that the regression EPMs are able to

effectively select planners for solving previously unseen instances and show that

the very small set of selected features (Sel) is a valuable source of information

for performing algorithm selection on either previously seen or previously unseen

domains and problem instances.

[Table 18 about here.]

6.4. Discussion

The algorithm selection approaches presented in the previous section exploit

EPMs for selecting a single planner for solving a given planning problem. In this

section, we shed some light on the selected planners.

As Table 16 shows, on the 4 “unseen” domains in the IPC 2014 set (highlighted

in grey in the table), the regression approaches tend to provide better prediction

performance on average, so they are able to better generalise on previously unseen

domains; the classification approaches are unable to select a good planner for the

RTAM domain while they are able to identify a suitable planner for the MapAnalyser

domain. Table 18 shows the planners selected by the particular EPMs using the

different sets of features. The classification approaches usually exploit more different

planners per domain. In every domain except Floortile, the regression approaches

32 COMPUTATIONAL INTELLIGENCE

select one single planner per a set of features (in MatchCellar and DriverLog dif-

ferent planners were selected while considering a different set of features). This, in

combination with results shown in Table 16, supports the observation that a single

planner usually performs well on problems from the same domain. However, we

conjecture that this is due to the fact that benchmarks for IPCs are usually selected

from a homogeneous distribution and are generated using a single problem generator.

This can lead to structurally-similar problem instances, on which a single planner can

excel.

By analysing the results shown in Table 18, we can derive that the difference of

performance between the regression EPMs using the selected set of features, and the

other sets, mainly arises in the Driverlog domain. In that domain, TFD does not solve

any problem, thus selecting it has a detrimental effect on performance. The winner

of the IPC-14 temporal track – Yahsp3-M T– is never selected by the regression

EPMs and is selected only in one domain by the classification EPMs. Similarly, the

previous version of that planner is rarely used. This is possibly due to the fact that

these planners show impressive performance on a very limited number of domains,

particularly RTAM and MapAnalyser, which are not included in the training set. We

also noticed the remarkable performance of the LPG planner; even though it has

been developed more than a decade ago, it is competitive with the current state-of-

the-art of temporal planning. Finally, Table 19 summarises the number of times that

each planner was selected by the considered EPMs.

[Table 19 about here.]

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 33

7. CONCLUSION

In this paper, we filled the gap between classical and temporal planning in terms

of predicting planners’ performance. Our work establishes a new extensive set of

features that can be extracted from temporal planning problems. In particular, we

introduced 71 new temporal-specific features, and merged them with “classical”

(propositional) features that can be extracted also from temporal problems; in total

139 planning-specific features have been considered for generating both classifi-

cation and regression EPMs which are exploited to select on-line the planner for

solving a given planning task. The large empirical analysis performed in this work:

(i) demonstrates that the performance of many temporal planners can be accurately

predicted by using EPMs; (ii) gives insights into the motivations that make planners

hard to predict, particularly running out of memory and the concurrency require-

ments; (iii) provides a valuable and informative set of 11 features that can be used

for effectively predicting the performance of temporal planners; (iv) shows that both

temporal-specific and non temporal features are useful for predicting planners per-

formance; (v) demonstrates that using EPMs for algorithm selection can significantly

improve the current state-of-the-art of temporal planning. Our work also highlights

a worrying evidence: in terms of coverage, planners that have been introduced more

than a decade ago are able to achieve performance comparable – and often better –

with the most recent planning systems. LPG results emphasised this idea, in many

cases it works better than the more recent planners.

Future work includes the extension of the current set of features by considering

probing features – information gained by short runs of different solvers –, and the

34 COMPUTATIONAL INTELLIGENCE

integration of different planners’ configurations obtained by using algorithm con-

figuration tools, such as SMAC Hutter et al. (2011). Finally, we plan to test the

suitability of deep learning approaches for generating EPMs.

Acknowledgements

This research was funded by the Czech Science Foundation (project no. 18-

07252S) and by the OP VVV funded project CZ.02.1.01/0.0/0.0/16 019/0000765

“Research Center for Informatics”. The authors would like to acknowledge the use

of the University of Huddersfield Queensgate Grid in carrying out this work.

REFERENCES

BÄCKSTRÖM, CHRISTER, and BERNHARD NEBEL. 1995. Complexity results for SAS+ planning. Computa-

tional Intelligence, 11:625–656.

BEDRAX-WEISS, TANIA, CONOR MCGANN, ANDREW BACHMANN, WILL EDGINGTON, and MICHAEL

IATAURO. 2005. EUROPA2: User and contributor guide. In NASA Tech. Rep.

CENAMOR, ISABEL, TOMÁS DE LA ROSA, and FERNANDO FERNÁNDEZ. 2012. Mining IPC-2011 results.

In Proceedings of the 3rd workshop on the International Planning Competition.

CENAMOR, ISABEL, TOMÁS DE LA ROSA, and FERNANDO FERNÁNDEZ. 2013. Learning predictive models to

configure planning portfolios. In Proceedings of the 4th workshop on Planning and Learning (ICAPS-PAL

2013), pp. 14–22.

CENAMOR, ISABEL, TOMÁS DE LA ROSA, and FERNANDO FERNÁNDEZ. 2014. IBaCoP and IBaCoP2 planner.

In Proceedings of the 8th International Planning Competition.

CENAMOR, ISABEL, TOMÁS DE LA ROSA, and FERNANDO FERNÁNDEZ. 2016. The IBaCoP planning system:

Instance-based configured portfolio. Journal of Artificial Intelligence Research, 56:429–464.

CERUTTI, FEDERICO, MASSIMILIANO GIACOMIN, and MAURO VALLATI. 2014. Algorithm selection for

preferred extensions enumeration. Proceedings of COMMA, 266:221–232.

COLES, A. J., A. I. COLES, M. FOX, and D. LONG. 2010. Forward-chaining partial-order planning. In Pro-

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 35

ceedings of ICAPS.

EYERICH, PATRICK, ROBERT MATTMÜLLER, and GABRIELE RÖGER. 2012. Using the context-enhanced ad-

ditive heuristic for temporal and numeric planning. In Towards Service Robots for Everyday Environments.

Springer, pp. 49–64.

FAWCETT, CHRIS, MAURO VALLATI, FRANK HUTTER, JÖRG HOFFMANN, HOLGER H. HOOS, and KEVIN

LEYTON-BROWN. 2014. Improved features for runtime prediction of domain-independent planners.

In Proceedings of ICAPS, pp. 355–359.

FINK, EUGENE. 1998. How to solve it automatically: Selection among problem-solving methods. In Proceedings

of AIPS, pp. 128–136.

FOX, MARIA, and DEREK LONG. 2003. PDDL2.1: An extension to PDDL for expressing temporal planning

domains. Journal of Artificial Intelligence Research, 20:61–124.

FRANK, JEREMY, and ARI K. JÓNSSON. 2003. Constraint-based attribute and interval planning. Con-

straints, 8(4):339–364. . https://doi.org/10.1023/A:1025842019552.

GEBSER, MARTIN, ROLAND KAMINSKI, BENJAMIN KAUFMANN, TORSTEN SCHAUB, MARIUS THOMAS

SCHNEIDER, and STEFAN ZILLER. 2011a. A Portfolio Solver for Answer Set Programming: Preliminary

Report, pp. 352–357. Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-642-20895-9. . http:

//dx.doi.org/10.1007/978-3-642-20895-9_40.

GEBSER, MARTIN, ROLAND KAMINSKI, BENJAMIN KAUFMANN, TORSTEN SCHAUB, MARIUS THOMAS

SCHNEIDER, and STEFAN ZILLER. 2011b. A portfolio solver for answer set programming: Preliminary

report. In Proceedings of the 11th International Conference Logic Programming and Nonmonotonic

Reasoning (LPNMR), Springer, pp. 352–357.

GEBSER, MARTIN, BENJAMIN KAUFMANN, ANDRÉ NEUMANN, and TORSTEN SCHAUB. 2007. clasp : A

conflict-driven answer set solver. In Proceedings of the 9th International Conference Logic Programming

and Nonmonotonic Reasoning (LPNMR), Springer, pp. 260–265.

GEREVINI, ALFONSO, ALESSANDRO SAETTI, and IVAN SERINA. 2003. Planning through stochastic local

search and temporal action graphs in LPG. J. Artif. Intell. Res.(JAIR), 20:239–290.

GEREVINI, ALFONSO, ALESSANDRO SAETTI, and MAURO VALLATI. 2011. Exploiting macro-actions and

predicting plan length in planning as satisfiability. In Proceedings of AI*IA, pp. 189–200.

GEREVINI, ALFONSO, ALESSANDRO SAETTI, and MAURO VALLATI. 2014. Planning through automatic

portfolio configuration: The pbp approach. J. Artif. Intell. Res., 50:639–696.

GHALLAB, MALIK, DANA NAU, and PAOLO TRAVERSO. 2004. Automated Planning: Theory & Practice.

36 COMPUTATIONAL INTELLIGENCE

Morgan Kaufmann Publishers.

GOMES, CARLA P., and BART SELMAN. 2001. Algorithm portfolios. Artificial Intelligence, 126(1-2):43–62.

HALL, MARK, EIBE FRANK, GEOFFREY HOLMES, BERNHARD PFAHRINGER, PETER REUTEMANN, and

IAN H. WITTEN. 2009. The WEKA data mining software: An update. SIGKDD Explorations, 11(1):10–18.

HE, HAIBO, and EDWARDO A GARCIA. 2009. Learning from imbalanced data. IEEE Transactions on

Knowledge and Data Engineering, 21(9):1263–1284.

HELMERT, MALTE. 2006. The Fast Downward planning system. J. Artif. Intell. Res.(JAIR), 26:191–246.

HELMERT, MALTE, GABRIELE RÖGER, and EREZ KARPAS. 2011. Fast downward stone soup: A baseline for

building planner portfolios. In ICAPS 2011 Workshop on Planning and Learning, pp. 28–35.

HOFFMANN, J. 2011. Analyzing search topology without running any search: On the connection between causal

graphs and h+. J. Artif. Intell. Res.(JAIR), 41:155–229.

HOOS, HOLGER, MARIUS THOMAS LINDAUER, and TORSTEN SCHAUB. 2014. claspfolio 2: Advances in

algorithm selection for answer set programming. Theory and Practice of Logic Programming, 14(4-5):569–

585.

HOWE, ADELE, and ERIC DAHLMAN. 2002. A critical assessment of benchmark comparison in planning. J.

Artif. Intell. Res.(JAIR), 17:1 – 33.

HOWE, ADELE, ERIC DAHLMAN, CHISTOPHER HANSEN, ANNELIESE VON MAYRHAUSER, and MICHAEL

SCHEETZ. 1999. Exploiting competitive planner performance. In Proceedings of (ECP), pp. 62–72.

HUTTER, F., H. H. HOOS, and K. LEYTON-BROWN. 2011. Sequential model-based optimization for general

algorithm configuration. In Proceedings of LION, pp. 507–523.

HUTTER, FRANK, HOLGER H HOOS, and THOMAS STÜTZLE. 2007. Automatic algorithm configuration based

on local search. In AAAI, Volume 7, pp. 1152–1157.

HUTTER, FRANK, LIN XU, HOLGER H HOOS, and KEVIN LEYTON-BROWN. 2014a. Algorithm runtime

prediction: Methods & evaluation. Artificial Intelligence, 206:79–111.

HUTTER, FRANK, LIN XU, HOLGER H HOOS, and KEVIN LEYTON-BROWN. 2014b. Algorithm runtime

prediction: Methods & evaluation. Artificial Intelligence, 206:79–111.

KOHAVI, RON. 1995. The power of decision tables. In Machine Learning: ECML-95. Springer, pp. 174–189.

KOTTHOFF, LARS. 2014. Algorithm selection for combinatorial search problems: A survey. AI Maga-

zine, 35(3):48–60.

LEYTON-BROWN, KEVIN, EUGENE NUDELMAN, GALEN ANDREW, JIM MCFADDEN, and YOAV SHOHAM.

2003. A portfolio approach to algorithm selection. In IJCAI, Volume 1543, p. 2003.

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 37

MALITSKY, YURI. 2014. Instance-specific algorithm configuration. In Instance-Specific Algorithm Configura-

tion. Springer, pp. 15–24.

MALITSKY, YURI, DAVID WANG, and EREZ KARPAS. 2014. The allpaca planner: All planners automatic

choice algorithm. In International Planning Competition (IPC), pp. 71–73.

QUINLAN, JOHN ROSS. 1993. C4. 5: programs for machine learning, Volume 1. Morgan kaufmann.

RANKOOH, MASOOD FEYZBAKHSH, ALI MAHJOOB, and GHOLAMREZA GHASSEM-SANI. 2012. Using

satisfiability for non-optimal temporal planning. In Logics in Artificial Intelligence. Springer, pp. 176–

188.

RICE, JOHN R. 1976. The algorithm selection problem. Advances in Computers, 15:65 – 118.

RIZZINI, MATTIA, CHRIS FAWCETT, MAURO VALLATI, ALFONSO EMILIO GEREVINI, and HOLGER H.

HOOS. 2017. Static and dynamic portfolio methods for optimal planning: An empirical analysis. Inter-

national Journal on Artificial Intelligence Tools, 26(1):1–27.

ROBERTS, MARK, and ADELE HOWE. 2009. Learning from planner performance. Artificial Intelligence, 173(5-

6):536–561.

ROBERTS, MARK, ADELE E. HOWE, BRANDON WILSON, and MARIE DESJARDINS. 2008. What makes

planners predictable? In Proceedings of ICAPS, pp. 288–295.

RODRIGUEZ, JUAN JOSÉ, LUDMILA I KUNCHEVA, and CARLOS J ALONSO. 2006. Rotation forest: A new

classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10):1619–

1630.

SEIPP, JENDRIK, SILVAN SIEVERS, MALTE HELMERT, and FRANK HUTTER. 2015. Automatic configuration

of sequential planning portfolios. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial

Intelligence, pp. 3364–3370.

VALLATI, MAURO, LUKÁŠ CHRPA, MAREK GRZES, THOMAS L MCCLUSKEY, MARK ROBERTS, and SCOTT

SANNER. 2015. The 2014 international planning competition: Progress and trends. AI Magazine, 36(3):90–

98.

VALLATI, MAURO, IVAN SERINA, ALESSANDRO SAETTI, and ALFONSO EMILIO GEREVINI. 2015. Identify-

ing and exploiting features for effective plan retrieval in case-based planning. In Proceedings of ICAPS,

pp. 239–243.

VIDAL, VINCENT. 2011. YAHSP2: Keep it simple, stupid. In Proceedings of the 7th International Planning

Competition, pp. 83–90.

VIDAL, VINCENT. 2014. YAHSP3 and YAHSP3-MT in the 8th international planning competition. In Proceed-

38 COMPUTATIONAL INTELLIGENCE

ings of the 8th International Planning Competition.

XU, LIN, FRANK HUTTER, HOLGER H HOOS, and KEVIN LEYTON-BROWN. 2008. SATzilla: Portfolio-based

algorithm selection for SAT. J. Artif. Intell. Res.(JAIR), 32:565–606.

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 39

(:durative-action LOAD-TRUCK
:parameters (?obj - obj ?truck - truck ?loc - location)
:duration (= ?duration 2)
:condition (and

(over all (at ?truck ?loc))
(at start (at ?obj ?loc))

)
:effect (and

(at start (not (at ?obj ?loc)))
(at end (in ?obj ?truck))

)
)

FIGURE 1. An example of a durative operator encoded in PDDL 2.1.

40 COMPUTATIONAL INTELLIGENCE

Training
Benchmarks

Planners
Empirical Performance
Models Construction.

Empirical Performance
Models Evaluation

Problem
Characterisation

Predictive
Approach

Evaluation

Best Training
Result Model

Algorithm
selection

Evaluation

Planners

Testing
Benchmarks

Problem
Characterisation

FIGURE 2. The architecture of the proposed system

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 41

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600 1800

C
o

v
e

ra
g

e

Time (seconds)

LPG
yahsp2
yahsp3

TFD
yashp2-mt
yahsp3-mt

itsat
popf2

FIGURE 3. The number of solved instances over time of the considered planners on
the benchmarks from the IPC 2014 temporal track.

42 COMPUTATIONAL INTELLIGENCE

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Parking Satellite Mapanalyser RTAM MatchCellar Floortile Driverlog Storage TurnandOpen TMS

Solved Problems

Planners

FIGURE 4. The red line (Solved Problems) is the proportion of the problems solved
by all the planners. The green line (Planners) is the proportion of the planners that
solved all the problems in the particular domain.

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 43

Name Type Description
Requirements Integer Number of PDDL features that are in-

cluded in the domain definition.
Types Integer Number of types in the domain definition.
Objects Integer Number of declared objects in the problem

definition.
Predicates Integer Number of predicates in the domain defini-

tion.
Facts Integer Number of predicates included in the ini-

tial state of the problem definition.
Non-Durative Actions Integer Number of non-durative actions included

in the domain definition.
Axioms Integer Number of axioms included in the domain

definition

TABLE 1. Propositional PDDL Features

44 COMPUTATIONAL INTELLIGENCE

Name Type Description
Assignment Integer Number of numeric assignments in the prob-

lem.
Num durative actions Integer Number of durative actions included in the

domain definition.
numeric duration Integer Number of durative actions with numeric du-

ration.
function duration Integer Number of durative actions with a numeric

fluent representing the duration.
Avg numeric duration Double Average, minimum and maximum duration

of durative actions with numeric duration.
Functions Double Number of numeric fluents included in the

domain definition
Avg arity Double Average, minimum and maximum of the ar-

ity of numeric fluents included in the do-
main.

At_start condition Double Average, minimum, maximum and standard
deviation of “at start” conditions.

Over_all condition Double Average, minimum, maximum and standard
deviation of “over all” conditions.

At_end condition Double Average, minimum, maximum and standard
deviation of “at end” conditions.

At_start effect Double Average, minimum, maximum and standard
deviation of “at start” effects.

At_end effect Double Average, minimum, maximum and standard
deviation of “at end” effects.

TABLE 2. Temporal PDDL Features

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 45

Name Type Description
Num_VariablesCG Integer Number of Variables in the CG
high Level VariablesCG Integer Number of Variables that has at least one

goal.
total EdgesCG Integer Number of edges that connect the nodes in

the CG
total WeightCG Integer Sum of the weight of the edges in the CG.
veRatio Double Ratio between variables and edges in the CG.
weRatio Double Ratio between weight and edges in the CG.
wvRatio Double Ratio between weight and variables in the

CG.
hvRatio Double Ratio between high level variables and the

other varaibles.
input Edge Double Maximum, average, standard deviation of the

input edges at the CG.
output Edge Double Maximum, average, standard deviation of the

output edges at the CG.
input Weight Double Maximum, average, standard deviation of the

weight of the input edges at the CG.
output Weight Double Maximum, average, standard deviation of the

weight of the output edges at the CG.
input EdgeHV Double Maximum, average, standard deviation of the

input edges at the High Level.
output EdgeHV Double Maximum, average, standard deviation of the

output edges at the High Level.
input WeightHV Double Maximum, average, standard deviation of the

weight of input edges at the High Level.
output WeightHV Double Maximum, average, standard deviation of the

weight of output edges at the High Level.

TABLE 3. General SAS+ Features extracted by considering the Causal Graph.

46 COMPUTATIONAL INTELLIGENCE

Name Type Description
total Edges Double Number of edges of all DTGs.
total Weigth Double Total weight of the edges of all DTGs.
edVa Ratio DTG Double Ratio between edges and variables.
weEd Ratio DTG Double Ratio between weight and edges.
weVa Ratio DTG Double Ratio between weight and variables.
input Edge DTG Double Maximum, average, standard deviation of the input edges

of the DTG.
output Edge Double Maximum, average, standard deviation of the output edges

of the DTG.
input Weight Double Maximum, average, standard deviation of the weight of the

input edges of the DTG.
output Weight Double Maximum, average, standard deviation of the weight of the

output edges of the DTG.

TABLE 4. General SAS+ Features derived from DTGs.

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 47

Name Type Description
Durative actions Numeric Number of durative actions identified by

TFD.
Action counter Numeric Number of different actions from the SAS+

translation
Function symbols Numeric Number of symbols identified by TFD.
Generated rules Numeric Number of rules generated by TFD in the

translation process.
Final queue Numeric Number of the elements that appear in the

planning queue.
Translator variables Numeric Number of temporal variables identified by

TFD.
Translator derived variables Numeric Number of temporal derived variables iden-

tified by TFD.
Translator facts Numeric Number of temporal facts identified by TFD.
Mutex key Numeric Number of mutexes
Strips to sas Numeric Number of auxiliary variables used in a tem-

poral SAS+ encoding
Ranges Numeric Number of different numeric variables with

different ranges.
Goal list Numeric Number of elements in the goal state of the

temporal task.
Task init Numeric Number of elements in the initial state of the

temporal task.
Translator durative act Numeric Number of actions in the preprocess phase.
Translator axiom Numeric Number of axioms in the translation phase.
Translator num axioms Numeric Number of simplified axioms in the transla-

tion phase.
Translator num axioms by layer Numeric Number of actions per level
Translator max num layer Numeric Maximum number of layers

TABLE 5. Temporal SAS+ Features part I

48 COMPUTATIONAL INTELLIGENCE

Name Type Description
Translator num axiom map Numeric Number of axioms that appear throughout the

process
Translator const num axioms Numeric Minimum number of necessary axioms
Translator reachable Numeric Number of variables that are reachable in the

initial state.
Translator mutex group Numeric Number of mutex groups.
Translation key Numeric Auxiliary value of TFD.
Avg level Numeric Average number of levels.
Std level Numeric Standard deviation of the number of levels.
Global num type start Numeric Number of transitions that are labeled at

at start.
Global num type end Numeric Number of transitions that are labeled at

at end.
Global min level Numeric Minimum number of levels in DTGs.
Global max level Numeric Maximum number of levels in DTGs.
Global total level Numeric Total number of levels in DTGs.
Init Integer Number of predicates that appear in the initial

state.
Goals Integer Number of predicates that appear in the goal.
Function administrator Integer Auxiliary number of functions in TFD
Final queue length Integer Size of the queue in the translation process.
Translator operators Integer Number of operators that appear in the trans-

lation process.
Necessary operators Integer Number of operators at the preprocessing

phase.
Uncovered facts Integer Number of facts included in the preprocess-

ing phase.
Necessary variables Integer Number of variables that appear in the trans-

lation process.
Relation axioms Integer Number of axioms that are relational in TFD.
Functional axioms Integer Number of axioms that are functional in

TFD.
True axioms Integer Number of axioms that are true in the trans-

lation process.

TABLE 6. Temporal SAS+ Features part II

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 49

Name Type Description
Ratio relevant actions Double Ratio between the number of final and initial

actions.
Num action Integer Number of final actions.
Num propositions Integer Number of all propositions.
Num relevant actions Integer Number of the final instantiated actions.
Num relevant propositions Integer Number of propositions that are included in

the relevant actions.
Variables end Integer Created Variables in the SAT formulation.
Propositions end Double Number of proposition that are included in

the instantiated actions.
Actions end Integer Instantiated actions in the SAT formulation

after simplification.
Total Mutex clauses Double Number of mutex clauses.
Ratio end Integer Ratio of the number of variables to the num-

ber of clauses
Event clauses Double Number of clauses in the original formula.
TClauses Integer Number of simplification clauses.
Number Files Integer Number of temporal files needed by ITSAT.

TABLE 7. SAT Size Features extracted by considering the SAT-based encoding exploited by ITSAT.

50 COMPUTATIONAL INTELLIGENCE

Average Maximum # Succ.
PDDL Prop 0.01 0.15 8 100%

Temp 5.06 10.00 28 100%
SAT size 0.89 2.00 13 80%
SAS+ 28.89 50.00 90 80%

Total 33.96 60.15 139 -

TABLE 8. Average and Maximum CPU time needed to extract features, the number of features per group
(#) and the percentage of successful feature extraction (Succ.).

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 51

Training domains
IPC-2008 IPC-2011
Crewplanning Crewplanning
Elevators-N Elevators
Elevators Floortile
Modeltrain Matchcellar
Openstacks-adl Openstacks
Openstacks-N Parcprinter
Openstacks-NADL Parking
Openstacks
Parcprinter Pegsol
Pegsol Sokoban
Sokoban Storage
Transport Temporal Machine Shop
Woodworking Turn and Open

TABLE 9. Training domains categorised according to the planning competition in which they were used.

52 COMPUTATIONAL INTELLIGENCE

IPC Domain IPC 2014 Unknown Known ADL Numeric Durative-actions
1 2002 Depots-simple-T
2 Depots-T
3 DriverLog-time
4 DriverLog-simpleTime
5 ZenoTravel-simpleTime
6 ZenoTravel-time
7 satellite
8 Rovers-mt
9 Rovers-time
10 UMLS-flaw
11 UMLS-fluents
12 2004 Airport-adl
13 Airport-str
14 Pipesworld-mt
15 Pipesworld-mtc
17 Satellite-adl
18 NOTANKAGE
19 TANKAGE
20 2006 Temporal Machine Shop (TMS)
21 Openstacks-strips
22 Openstacks-time
23 Openstacks-mt
24 Openstacks
25 Storage-time
26 Storage
27 Trucks-adl
28 Trucks-time
29 Rovers
30 PipesWorld
31 2014 Driverlog
32 Floortile
33 Map-Analyser
34 Matchcellar
35 Parking
36 RTAM
37 Satellite
38 Storage
39 Temporal Machine Shop (TMS)
40 Turn and Open
Total 10 (4/6) 23 7

TABLE 10. The considered domains divided into the Unknown, Known and IPC 2014 sets. PDDL
requirements per each considered domain.

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 53

Group PDDL SAS+ Temporal (T) Classical(nT) Selection (Sel) All
Proposisitional PDDL 8
Temporal PDDL 28
General SAS+ 49
Temporal SAS+ 30
TFD 11
SAT size 13
Total 49 90 71 68 11 139

TABLE 11. An overview of the sets of features considered in our experimental analysis. Checkmark
indicates that the group of features (column) includes the corresponding set (row). The Sel set does not include
all the features of involved groups.

54 COMPUTATIONAL INTELLIGENCE

Training Instances
Planner All PDDL SAS+ nT T Sel
LPG 92.6 88.5 88.6 92.7 91.9 88.4
POPF2 88.6 87.2 84.9 88.7 88.2 87.7
Yahsp2 89.6 91.0 89.1 87.9 89.9 91.4
Yahsp2-MT 95.5 91.9 89.3 93.9 95.3 89.8
ITSAT 94.1 88.2 88.4 93.6 94.1 89.1
TFD 94.1 87.5 84.9 93.5 94.2 88.8
Yahsp3 91.0 90.8 89.0 89.7 91.2 93.1
Yahsp3-MT 93.9 93.4 90.7 92.2 93.8 90.7

TABLE 12. Accuracy (higher is better) of the classification EPMs predicting whether a planner will solve
a problem or not on the training instances. Bold indicates the best results (also considering hidden decimals).

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 55

IPC 2014
Planner All PDDL SAS+ nT T Sel
LPG 76.5 81.5 73.0 75.0 74.5 76.0
POPF2 87.0 77.5 83.5 86.5 80.5 68.5
Yahsp2 74.5 76.0 67.5 57.0 59.5 56.5
Yahsp2-MT 63.5 80.5 65.0 72.5 57.0 68.0
ITSAT 89.0 88.5 73.0 84.5 88.5 74.5
TFD 67.0 67.0 69.5 71.0 67.0 67.0
Yahsp3 60.0 74.0 61.5 59.0 57.0 56.0
Yahsp3-MT 75.0 82.0 73.0 65.5 57.0 78.0

Known
All PDDL SAS+ nT T Sel

LPG 42.5 81.2 33.3 31.2 76.3 53.8
POPF2 65.6 72.0 67.20 45.7 77.4 51.6
Yahsp2 43.6 75.8 74.19 76.9 78.0 78.0
Yahsp2-MT 80.1 57.5 76.9 76.3 79.0 79.0
ITSAT 97.3 100 76.3 86.0 98.4 92.5
TFD 42.5 39.3 71.5 75.3 44.6 41.4
Yahsp3 71.5 77.4 65.1 74.7 57.5 77.4
Yahsp3-MT 53.2 78.5 76.9 75.8 78.5 78.5

Unknown
All PDDL SAS+ nT T Sel

LPG 62.6 48.9 64.4 55.4 55.7 56.8
POPF2 59.8 57.0 67.3 77.1 42.1 57.1
Yahsp2 48.9 80.3 84.7 84.5 73.2 75.7
Yahsp2-MT 75.0 71.4 79.4 82.2 74.7 72.0
ITSAT 92.4 86.2 90.0 75.0 89.3 92.4
TFD 57.6 53.7 70.8 68.0 40.8 30.6
Yahsp3 62.2 73.7 78.2 71.9 78.2 55.7
Yahsp3-MT 86.4 65.0 78.3 72.7 73.6 57.1

TABLE 13. Accuracy (higher is better) of the classification EPMs predicting whether a planner will solve
a problem or not on the testing instances. Bold indicates the best results (also considering hidden decimals).

56 COMPUTATIONAL INTELLIGENCE

Training Instances
Planner All PDDL SAS+ nT T Sel
LPG 1.49 1.57 1.84 1.54 1.48 1.49
POPF2 2.12 2.27 2.53 2.23 2.11 2.05
Yahsp2 1.76 1.45 2.07 1.86 1.65 1.27
Yahsp2-MT 1.41 1.45 2.25 1.84 1.33 1.30
ITSAT 1.45 1.58 1.68 1.41 1.42 1.38
TFD 2.18 2.32 2.56 2.19 2.16 2.02
Yahsp3 1.61 1.60 2.04 1.81 1.43 1.41
Yahsp3-MT 1.42 1.28 1.29 1.55 1.21 1.17

TABLE 14. Root mean squared error (lower is better) of the regression EPMs built by using Decision
Tables on training instances. Bold indicates the best performance (also considering hidden decimals).

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 57

IPC 2014
Planner All PDDL SAS+ nT T Sel
LPG 3.29 3.56 2.61 2.60 3.44 2.20
POPF2 2.49 2.43 2.22 2.84 2.48 2.76
Yahsp2 2.76 2.55 3.22 2.76 2.37 3.63
Yahsp2-MT 2.83 3.05 3.36 3.08 2.89 2.86
ITSAT 2.06 2.28 2.54 2.42 2.36 1.87
TFD 2.51 2.73 2.87 2.80 2.83 2.19
Yahsp3 2.60 3.33 3.23 2.85 2.79 2.20
Yahsp3-MT 2.99 2.85 3.12 3.27 2.65 2.64

Known
All PDDL SAS+ nT T Sel

LPG 3.02 3.02 3.54 3.53 3.02 3.02
POPF2 2.86 2.46 2.53 2.67 2.43 2.46
Yahsp2 1.73 1.57 2.03 2.06 1.57 1.62
Yahsp2-MT 3.18 3.16 2.12 2.13 3.16 1.54
ITSAT 1.61 1.61 0.87 0.99 2.15 2.29
TFD 3.47 3.47 2.98 2.94 3.45 3.09
Yahsp3 1.46 1.51 2.12 2.12 1.47 1.57
Yahsp3-MT 2.42 1.99 1.95 1.97 1.68 1.49

Unknown
All PDDL SAS+ nT T Sel

LPG 2.86 2.86 2.13 2.86 2.86 2.31
POPF2 2.26 2.35 2.15 2.06 2.35 2.36
Yahsp2 2.18 2.15 2.39 2.37 2.15 2.15
Yahsp2-MT 2.80 2.78 2.40 2.35 2.78 2.02
ITSAT 2.70 2.70 2.45 2.56 2.84 2.85
TFD 3.86 3.86 2.81 2.78 3.86 2.80
Yahsp3 2.15 2.15 2.46 2.44 2.12 2.32
Yahsp3-MT 2.13 2.03 2.16 2.20 2.02 1.88

TABLE 15. Root mean squared error (lower is better) of regression EPMs built by using Decision Tables
on testing instances. Bold indicates the best performance (also considering hidden decimals).

58 COMPUTATIONAL INTELLIGENCE

Classification Regression Best VBS B4P
Domain All Sel nT T All Sel nT T C S
TMS 18 18 16 18 18 18 18 18 0 0 18 0
TurnAndOpen 12 12 14 15 17 17 17 17 0 0 17 15
Storage 17 17 17 17 17 17 17 17 17 9 17 17
Driverlog 7 2 6 0 13 0 13 13 13 9 13 12
Floortile 20 20 20 20 20 20 20 20 20 8 20 20
MatchCellar 19 20 20 20 20 20 20 20 0 0 20 20
MapAnalyser 10 14 9 10 7 7 7 7 7 20 20 20
RTAM 0 6 0 3 20 20 20 20 20 20 20 20
Satellite 12 3 6 2 20 20 20 20 20 20 20 20
Parking 14 20 20 20 20 20 20 20 20 20 20 20
Coverage 129 132 128 125 172 159 172 172 117 106 185 164
IPC-Score 91.8 102.4 95.1 105.8 129.3 126.6 129.3 129.3 62.1 86.2 185 72.5

TABLE 16. Coverage and total IPC score of the regression and classification EPMs exploited for algorithm
selection; of the best basic solver according to coverage (Best-C); of the best basic solver according to IPC score
(S-Best), of the virtual best solver (VBS), and of a static portfolio including 4 planners (B4P). The rows in grey
indicate the domains that are not included in the training set. Bold indicates the best performance.

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 59

Unknown Test Set
Classification Regression Best VBS B4P

All Sel nT T All Sel nT T
Total 238 167 260 229 309 309 301 309 360 437 404
IPC-Score 175.1 177.9 183.0 168.4 277.0 277.0 269.2 277.0 242.6 437 249.6

Known Test Set
Classification Regression Best VBS B4P

All Sel nT T All Sel nT T
Coverage 79 78 71 78 115 111 115 114 143 162 153
IPC-Score 50.0 57.3 64.2 54.8 113.1 110.2 110.2 108.6 88.7 162.0 90.0

TABLE 17. Coverage and total IPC score of the regression and classification EPMs exploited for algorithm
selection; of the best basic solver according to coverage (Best); of the virtual best solver (VBS), and of a static
portfolio configured on the testing problems (B4P). Bold indicates the best performance.

60 COMPUTATIONAL INTELLIGENCE

Classification Regression
All Sel nT T All sel nT T

DriverLog LPG 0 0 2 0 20 0 20 20
POPF2 0 3 0 1 0 0 0 0
TFD 3 14 3 19 0 20 0 0
Y2 17 3 13 0 0 0 0 0
ITSAT 0 0 2 0 0 0 0 0

Floor ITSAT 10 0 20 20 15 20 15 20
LPG 10 20 0 0 5 0 5 0

Map LPG 0 0 0 0 20 20 20 20
POPF2 5 0 0 0 0 0 0 0
TFD 15 20 14 14 0 0 0 0
ITSAT 0 0 6 6 0 0 0 0

MatchCellar ITSAT 15 0 9 9 0 0 0 0
POPF2 0 0 4 4 0 20 0 20
TFD 5 20 7 7 20 0 20 0

Park. POPF2 11 0 0 0 0 0 0 0
Y2 0 20 0 0 0 0 0 0
Y2-MT 9 0 0 0 20 20 20 20
Y3-MT 0 0 20 20 0 0 0 0

RTAM LPG 0 6 0 0 20 20 20 20
TFD 20 14 17 17 0 0 0 0
Y3-MT 0 0 3 3 0 0 0 0

Satellite LPG 0 0 0 0 20 20 20 20
POPF2 7 20 0 0 0 0 0 0
TFD 13 0 2 2 0 0 0 0
ITSAT 0 0 18 18 0 0 0 0

Stor. LPG 20 20 20 20 20 20 20 20
TMS ITSAT 20 20 20 20 20 20 20 20
T&O ITSAT 3 0 0 0 0 0 0 0

POPF2 6 11 2 2 0 0 0 0
TFD 11 9 18 18 20 20 20 20

TABLE 18. Planners selected by the Classification or Regression EPMs, with different sets of features on
the IPC 2014 benchamrks.

ON THE PREDICTABILITY OF DOMAIN-INDEPENDENT TEMPORAL PLANNERS 61

Classification Regression
All Sel nT T All Sel nT T

LPG 30 46 22 20 105 80 100 105
Yahsp2 17 23 13 0 0 0 0 0
Yahsp2-MT 9 0 0 0 20 20 20 20
POPF2 29 34 6 7 0 20 20 0
ITSAT 48 20 57 55 35 40 40 35
TFD 67 77 61 77 40 40 20 40
Yahsp3 0 0 0 0 0 0 0 0
Yashp3-MT 0 0 23 23 0 0 0 0

TABLE 19. Number of times each planner has been selected by the classification or regression EPMs
exploiting different sets of features. nT and T refer to Non-Temporal and Temporal sets of features, respectively.

