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ABSTRACT
The Constraint Programming (CP) paradigm allows to mod-
el and solve Constraint Satisfaction / Optimization Problems
(CSPs / COPs). A CP Portfolio Solver is a particular con-
straint solver that takes advantage of a portfolio of different
CP solvers in order to solve a given problem by properly
exploiting Algorithm Selection techniques. In this work we
present sunny-cp: a CP portfolio for solving both CSPs and
COPs that turned out to be competitive also in the MiniZinc
Challenge, the reference competition for CP solvers.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence—
Constraint Programming, Algorithm Portfolios, Solvers and
Tools.

1. INTRODUCTION
Constraint Programming (CP) is a declarative paradigm

that enables expressing relations between different entities
in the form of constraints that must be satisfied. The main
goal of CP is to model and solve Constraint Satisfaction
Problems (CSPs) as well as Constraint Optimization Prob-
lems (COPs) [34]. Solving a CSP means finding a solution
that satisfies all the constraints of a given problem. COPs
can be instead regarded as generalized CSPs where we are
not only interested in finding a solution, but also in mini-
mizing (or maximizing) a given objective function. In the
following, with the term ’CP problem’ we will refer either to
a CSP or to a COP.

One of the more recent trends in CP —especially in the
SAT field— is solving a given problem by using a portfolio
approach [15, 33]. This is a general methodology that com-
bines a number of different algorithms in order to get an
overall better algorithm. More precisely, a portfolio solver
uses a collection of m > 1 constituent solvers s1, . . . , sm in
order to obtain a globally better solver. When a new, un-
seen problem p comes, the portfolio solver tries to predict

the best constituent solver(s) s1, . . . , sk (with 1 ≤ k ≤ m)
for solving p and then runs such solver(s) on p.

Despite their proven effectiveness, portfolio solvers are
rarely used in practice and usually restricted to the SAT
field (e.g., see [6,17,23,24,27,35,42]). As far as the CP field
is concerned, the first portfolio solver was CPHydra [31] that
in 2008 demonstrated its effectiveness by winning the Inter-
national Constraint Solver Competition. Unfortunately, the
actual use of CPHydra is nowadays limited, since it uses a re-
stricted number of dated constituent solvers and it can solve
only CSPs encoded in the XML-based language XCSP [36].
A more recent portfolio approach is Proteus [21]. It does
not rely purely on CSP solvers, but may decide to encode a
CSP instance into SAT. Unfortunately, even Proteus is not
able to solve COPs and still relies on the XCSP format.

More recently (in 2013) a portfolio solver built on top
of Numberjack platform [18] attended the MiniZinc Chal-
lenge (MZC) [39], which is nowadays the only international
competition for evaluating the performances of CP solvers.
This approach does not discriminate between the constituent
solvers but launches in parallel all of them. This solver, how-
ever, achieved rather poor results, perhaps due to the limited
number of solvers and to some issues in parsing the FlatZinc
language [28] (i.e., the input format of the MZC).

Another recent solver is sunny-csp, based on the SUNNY
approach [4]. sunny-csp is a CSP portfolio solver that sup-
ports MiniZinc [30] —nowadays the de-facto standard to
model CP problems— and XCSP. Originally SUNNY was
intended to tackle only CSPs but, due to its performance
and flexibility, it was also adapted to solve COPs [3,5].

In this paper we merge these two lines of research by
proposing sunny-cp: a new tool aimed at solving a generic
CP problem. The aim of this paper is not to propose a new
portfolio approach, but to describe and provide a flexible,
configurable, and usable CP portfolio solver that can be set
up and executed just like a regular individual CP solver. To
the best of our knowledge, sunny-cp is the only sequential
portfolio solver able to solve generic CP problems and it was
the only portfolio solver that attended the MZC 2014.

The empirical evaluations in [3–5] have already proven the
effectiveness of SUNNY algorithm when validated on het-
erogeneous and large benchmarks (i.e., about 500 or more
problems) using a solving timeout of 1800 seconds. Con-
versely, in the MZC the time cap for constraint solving is
restricted to 900 seconds and the test set is limited (100 in-
stances each). Nevertheless, despite that the MZC is not the
ideal scenario for a portfolio solver, we show that sunny-cp

was competitive even in this setting.



Paper Structure. In Section 2 we recall the underlying
SUNNY algorithm. In Section 3 we describe the architecture
of sunny-cp while in Section 4 we examine the results it
achieved in the MZC 2014. In Section 5 we discuss the
related work while in Section 6 we draw some concluding
remarks.

2. THE SUNNY ALGORITHM
In this section we provide an overview of SUNNY [4], the

algorithm on which sunny-cp relies. For a more detailed
explanation of SUNNY we refer the reader to [3–5].

SUNNY is a lazy portfolio approach originally tailored for
CSPs. The basic idea behind SUNNY is to exploit instance
similarities to run just a small but promising schedule of
solvers. Given a CSP p and a portfolio Π, it uses a k-Nearest
Neighbours (k-NN) algorithm to select from a set of train-
ing instances a subset N(p, k) of the k instances closer to p
according, for simplicity, to the Euclidean distance. Then,
on-the-fly, it computes a schedule of solvers by considering
the smallest sub-portfolio S ⊆ Π able to solve the maximum
number of instances in the neighbourhood N(p, k) within
a timeout T and by allocating to each solver of S a time
proportional to the number of solved instances in N(p, k).
SUNNY also allocates to a backup solver, i.e., a solver of
the portfolio aimed to handle exceptional circumstances like
the premature failures of a constituent solver, an amount of
time proportional to the number of instances not solved in
N(p, k) within the timeout.

Example 1 reports a running example of how SUNNY
works on a given CSP.

Example 1 Let us suppose we have to solve a given CSP p
by means of a portfolio Π = {s1, s2, s3, s4}, where the backup
solver is s3, the solving timeout is T = 1800 seconds, the
neighborhood of p (of size k = 5) is N(p, k) = {p1, ..., p5},
and the runtimes of the solvers of Π on N(p, k) are defined
as listed in Table 1.

p1 p2 p3 p4 p5
s1 T T 3 T 278
s2 T 593 T T T
s3 T T 36 1452 T
s4 T T T 122 60

Table 1: Runtimes (in seconds). T means the solver timeout.

The minimum size sub-portfolios that allow to solve the
most instances (i.e., 4 instances) are {s1, s2, s3}, {s1, s2, s4},
and {s2, s3, s4}. SUNNY selects S = {s1, s2, s4} since it has
a lower average solving time (1270.4 sec., to be precise).
Since s1 and s4 solve 2 instances, s2 solves 1 instance, and
p1 is not solved by any solver within T seconds, the solving
time window [0, T ] is partitioned in 2+2+1+1 = 6 slots: 2
assigned to s1 and s4, 1 slot to s2, and 1 to the backup solver
s3. After sorting the solvers by increasing solving time in the
neighborhood, SUNNY executes in order the solvers s4, s1,
s3, and s2 for respectively 600, 600, 300, 300 seconds.

The promising performances achieved by SUNNY [4] on
exhaustive benchmarks of CSPs have led to the development
of sunny-csp, a CSP portfolio solver built on top of SUNNY
by using 12 solvers (i.e., BProlog, Fzn2smt, CPX, G12/FD,
G12/LazyFD, G12/MIP, Gecode, izplus, MinisatID, Mis-
tral, and OR-Tools), a set of 155 features, and k = 16.

Motivated by the encouraging results of sunny-csp, SUN-
NY was adapted in order to deal with COPs. A modifica-
tion was needed because when optimization problems are
considered the dichotomy solved/not solved of CSP is no
longer suitable. Indeed, a COP solver can yield sub-optimal
solutions or even give the optimal one without being able to
prove its optimality. In order to evaluate the performances
of different COP solvers in [3] a new metric score was in-
troduced to take into account the quality of the solutions.
This metric gives to each solver a score in [0.25, 0.75] lin-
early proportional to the distance between the best solution
it finds and the best known solution. An additional reward
(score = 1) is given if the solver is able to prove optimality
while a punishment (score = 0) is given if the solver does
not provide answers (or it gives an incorrect answer).

The adaptation of SUNNY from CSPs to COPs was there-
fore based on the notions of score and optimization time,
instead of solved instances and solving time. In this case,
SUNNY selects the sub-portfolio S ⊆ Π that maximizes the
score in the neighborhood and allocates to each solver a
time in [0, T ] proportional to its total score in N(p, k). In
particular, while in the CSP version SUNNY allocates to the
backup solver an amount of time proportional to the number
of instances not solved in N(p, k), in the COP version it as-
signs to it a slot of time proportional to k−h where h is the
maximum score achieved by the sub-portfolio S. While for
CSPs the final schedule is obtained by sorting the solvers by
increasing solving time, for COPs the sorting is computed
by considering the time needed to prove optimality.

Example 2 concludes the Section by providing an illustra-
tive example of how SUNNY works on a given COP.

Example 2 Let us suppose that Π = {s1, s2, s3, s4}, the
backup solver is s3, T = 1000 seconds, k = 3, N(p, k) =
{p1, p2, p3}, and the scores/optimization times are defined
as listed in Table 2.

p1 p2 p3
s1 (1, 150) (0.25, 1000) (0.75, 1000)
s2 (0, 1000) (1, 10) (0, 1000)
s3 (1, 100) (0.75, 1000) (0.7, 1000)
s4 (0.75, 1000) (0.75, 1000) (0.25, 1000)

Table 2: (score, time) of each solver si for every COP pj .

The minimum size sub-portfolio that allows to reach the
highest score h = 1+1+0.75 = 2.75 is {s1, s2}. On the basis
of the sum of the scores reached by s1 and s2 in N(p, k) (resp.
2 and 1) the slot size is t = T/(2 + 1 + (k − h)) = 307.69
seconds. The time assigned to s1 is 2 ∗ t = 615.38 while for
s2 is 1∗ t = 307.69. The remaining 76.93 seconds are finally
allocated to the backup solver s3. After sorting the solvers by
increasing optimization time, SUNNY executes first s2 for
615.38 seconds, then s3 for 76.93 seconds, and finally s1 for
307.69 seconds.

3. SUNNY-CP
In this Section we illustrate the architecture of sunny-cp.

Since the MiniZinc 1.6 platform [28] is required for process-
ing the MiniZinc input files, we initially set up the portfolio
of sunny-cp with the solvers coming with this suite, namely:
CPX, G12/FD, G12/LazyFD, and G12/CBC. Then, in or-
der to get an heterogeneous portfolio, we included four more



solvers disparate in their nature: Gecode [13] (FD solver
and gold medallist of the 2008–2012 MZCs), MinisatID [10]
(SAT-based solver), Chuffed (Lazy Clause CP solver and
best solver in the MZCs 2012–20141), and G12/Gurobi (MIP
solver). Clearly, it would have been possible to add a number
of other solvers. However, from the experimental investiga-
tions conducted in [1, 3], it turned out that using too large
portfolios may be ineffective or sometimes even harmful. We
therefore decided to use just the eight solvers mentioned
above, while still providing the opportunity to arbitrarily
change the portfolio composition.

Figure 1 summarizes the step-by-step execution flow of the
framework from the input CP problem to the final output
outcome. The input of sunny-cp consists of the problem
instance p to be solved, the size k of the neighbourhood
used by the underlying k-NN algorithm, the solving timeout
T , and the solver B of the portfolio to be used as backup
solver. Despite the portfolio described above is fixed, it is
still possible for the end user to select only a subset of its
solvers. In addition, as described below, the user can also
specify the knowledge base to use for the solver(s) selection.

CP Problem
p

1. Features 
Extraction

2.  Features 
Preprocessing

3. Neighbours 
Identification

4. Schedule
 Computation

5. Problem
 Resolution

Outcome

Backup
Solver B

Portfolio
Timeout

T
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Knowledge
Base
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1.0
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Schedule

F

 F'
Knowledge

Base
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INPUT PARAMETERS

CSP MODULE COP MODULE

OUTPUT

SAT. OPT. UNB.UNS. UNK.

Figure 1: sunny-cp architecture.

The first step —that does not discriminate between CSPs
and COPs— concerns the features extraction. Given a CP
problem p in input, this process identifies a feature vector,
i.e., a collection of numerical attributes (e.g., number of vari-
ables, number of constraints, etc.) that characterize the in-
stance p. Having a good set of features is a crucial step
for boosting the performances of a portfolio solver. In our
case, the features are used by the k-NN algorithm to find

1Chuffed is not eligible for prizes, being developed by the
challenge organizers.

within the training set the k instances closer to p accord-
ing to the Euclidean distance. Instead of using the whole
set of 155 features of sunny-csp [4], sunny-cp makes use of
the new features extractor mzn2feat-1.0 [29]. This tool is
essentially a new version of the extractor mzn2feat [2] de-
signed to be more portable, light, fast, and flexible. Indeed,
mzn2feat-1.0 does not compute features based on graph
measures since this process could be very time/space con-
suming. Moreover it does not compute solver-specific or
dynamic features, thus allowing the features to be portable
and the extractor to be decoupled from a particular solver
and from the given machine on which it is executed. In total,
mzn2feat-1.0 extracts 95 features.

At step 2, the execution flow branches: if p is a CSP in-
stance, sunny-cp uses a knowledge base KBCSP , otherwise
the knowledge base KBCOP is selected. Basically, a knowl-
edge base can be seen as a map that associates to each CP
problem a body of information relevant for the resolution
process. Every CP problem of the knowledge base belongs
to a training set of already known instances, and for each
CP problem the relevant information are essentially two: its
feature vector and the solving outcome of each constituent
solver on it. sunny-cp already comes with default knowl-
edge bases, constructed by collecting two different datasets
∆CSP and ∆COP of CSP and COP instances retrieved from
the CP instances of the MiniZinc 1.6 benchmarks, the MZCs
2012/13, and the International CSP Solver Competitions.
More in detail, ∆CSP (resp. ∆COP ) contains 5524 (resp.
4864) instances, to each of which is associated a feature vec-
tor of 78 (resp. 88) features and the performances of each
solver of the portfolio on it. The feature vectors of KBCSP

and KBCOP differ in size since from the original 95 features
extracted by mzn2feat-1.0 we removed all the constant fea-
tures. Moreover, since the performances of the k-NN algo-
rithm can be drastically degraded by the presence of noisy or
irrelevant features [11], all the features values are scaled in
the range [−1, 1]. It is worth noticing that sunny-cp allows
also the use of other knowledge bases given as input param-
eters. To ease the task of defining a customized knowledge
base, sunny-cp comes with some utilities that help the user
to assemble a knowledge base starting from a set of (not nor-
malized) feature vectors and the performances of the solvers
of the portfolio on the training instances.

The original feature vector F of the instance p is normal-
ized in step 2 by exploiting the information of the corre-
sponding knowledge base. The resulting normalized vector
F ′ is then used in step 3 to identify the k nearest neighbours
of p, i.e, the first k instances of the selected knowledge base
for which the corresponding normalized feature vector has a
smaller Euclidean distance from the normalized vector F ′.2

The neighbourhood size k is an input parameter which is
set to k = 70 unless otherwise specified. We have chosen
this default value since it is close to the square root of the
default knowledge bases size. Indeed, the choice of k is very
critical: a simple initial approach consists in setting k =

√
n

where n is the number of training samples [11].
In step 4, the SUNNY algorithm described in Section 2 is

used to compute the schedule of solvers to be executed for
solving p. The selected solvers will be executed sequentially
in step 5, according to the given time limit. The default
timeout T is 1800 seconds (i.e., the one used in the last In-

2The Euclidean distance is used for simplicity following the
approach of CPHydra [31].



ternational CSP Competition [9]) while the default backup
solver B is Chuffed, since it has proven to be the best solver
on the default training instances. However, both T and B
are options that can be specified by the end user. If a solver
aborts its execution prematurely (e.g., due to memory over-
flows or unsupported constraints) its remaining execution
time is allocated to the next scheduled solver, if any, or to a
not scheduled solver of the portfolio otherwise.

Note that in case p is a CSP the scheduled solvers are ex-
ecuted independently, i.e., there is no cooperation and com-
munication between them.3 If instead p is a COP instance,
sunny-cp exploits the best solution found by a solver for
narrowing the search space of the following ones. If p is a
CSP, sunny-cp may output three alternatives: satisfiable (a
solution exists for p), unsatisfiable (p has no solutions) or
unknown (sunny-cp is not able to say anything about p). If
p is a COP, there are two more alternatives: sunny-cp can
be able to prove the optimality of the solution found or even
to prove the unboundedness of p.

We would like to underline that, according to the method-
ology introduced in [5], sunny-cp also allows to solve a given
COP by first running a precomputed schedule of solvers in
the first C ≤ T seconds. The purpose of this static sched-
ule is essentially to find as many good solutions as possible
in the first C seconds, so as to ensure a “warm start” to
the solvers of the dynamic schedule computed by SUNNY,
that will be executed for the remaining T −C seconds. The
use of the static schedule might speed up the search, poten-
tially allowing sunny-cp to outperform the best solver of the
portfolio. The static schedule is empty by default, since its
computation may involve a non-trivial off-line phase. Nev-
ertheless, the user has the possibility to set his own static
schedule or even to choose among other static schedules that
we have already pre-computed.
sunny-cp is mainly written in Python. It requires the

independent installation of the features extractor mzn2feat-
1.0 and of each constituent solver. The source code used in
the MZC 2014 is available at [40].

4. VALIDATION
The performances of SUNNY against different state-of-

the-art approaches have been extensively studied in [3–5]
by using big test sets (i.e., about 500 instances or more)
and a fairly large solving timeout (T = 1800 seconds). All
these empirical evaluations has proven the effectiveness of
SUNNY, in particular w.r.t. the constituent solvers of the
portfolio that have been always greatly outperformed. In
this section we show instead how sunny-cp behaved in the
MZC 2014. In this setting things are different: the test set is
far smaller (i.e., 100 instances, almost always satisfiable), the
timeout is an half (900 seconds), and especially a different
evaluation metric is adopted w.r.t. those described in [3–5].

Different metrics can actually be adopted to evaluate the
effectiveness of CP solvers. Given a solving timeout T and
a test set of CSP instances, the performance of a solver is
usually measured in terms of number of instances solved
and average solving time [1, 37]. More formally, we can de-
fine the metrics proven and time as follows: if a solver s

3sunny-cp views the constituent CSP solvers as “black
boxes’. The lack of a standard protocol to extract and share
knowledge between solvers makes it hard to communicate
potentially useful information like no-goods and cuts.

SOLVER SCORE
Chuffed-free* 1324.02

OR-Tools-par (GOLD MEDAL) 1084.97
Opturion CPX-free (SILVER MEDAL) 1079.02

sunny-cp-presolve-open 1064.46
Choco-par (BRONZE MEDAL) 1005.61

iZplus-par 994.32
sunny-cp-open 967.14

G12/LazyFD-free* 782.78
HaifaCSP-free 779.72

Gecode-par 720.97
SICStus Prolog-fd 708.51

Mistral-free 703.56
MinisatID-free* 587.24
Picat SAT-free 586.64

JaCoP-fd 549.24
G12/FD-free* 526.26
Picat CP-free 402.88
Concrete-free 353.24

Table 3: MZC 2014 open track. Parallel solvers are in italics,
while the solvers included in sunny-cp are marked with *.

is able to prove the (un-)satisfiability of p in t < T sec-
onds then proven(s, p) = 1 and time(s, p) = t, otherwise
proven(s, p) = 0 and time(s, p) = T . A natural generaliza-
tion for COPs can be obtained by setting proven(s, p) = 1
and time(s, p) = t if s proves in t < T seconds the optimality
of a solution for p, the unsatisfiability of p or its unbounded-
ness. Otherwise, proven(s, p) = 0 and time(s, p) = T , even
when sub-optimal solutions are found.

The scoring procedure of MZC is instead based on a Borda
count voting system [8] where each CP problem is treated
like a voter who ranks the solvers. Each solver gets a score
proportional to the number of solvers it beats. A solver s
scores points on problem p by comparing its performance
with each other solver s′ on problem p. If s gives a better
answer than s′ then it scores 1 point, if it gives a worse
solution it scores 0 points. If s and s′ give indistinguishable
answers then the scoring is based on the solving time. In
particular, s scores either: 0, if it fails to find any solution or
fails to prove unsatisfiability; 0.5, if both s and s′ complete
the search in 0 seconds; time(p, s′)/(time(p, s)+time(p, s′))
otherwise.4

The results of the open search category of the MZC 2014
are summarized in Table 3. Two versions off sunny-cp at-
tended the competition: sunny-cp-open and sunny-cp-pre-
solve-open. The first is the default sunny-cp solver as de-
scribed in Section 3. The second is instead the variant that
runs for every COP a static schedule in the first 30 seconds.
In particular the solvers Chuffed, Gecode and CPX are ex-
ecuted for 10 seconds each.

Before discussing the results, it is appropriate to make
a few remarks. First, the open class includes also parallel
solvers. This can be disadvantageous for sequential solvers
like sunny-cp that does not exploit more computation units.
Second, in the MZC the solving time time(p, s) refers to the
time needed by s for solving the FlatZinc model ps resulting
from the conversion of the original MiniZinc model p to ps,
thus ignoring the solver dependent time needed to flatten

4For more details about MZC rules we refer the interested
reader to the MiniZinc website [28].



p in ps. The choice of discarding the conversion penalizes
a portfolio solver. Indeed, given the heterogeneous nature
of our portfolio, sunny-cp can not use global redefinitions
that are suitable for all its constituent solvers. Therefore,
differently from all the other solvers of the open search track,
the result of sunny-cp were computed by considering not
only the solving time of the FlatZinc models but also all the
conversion times of the MiniZinc input, including an initial
conversion to FlatZinc required for extracting the features of
p. Moreover, as we detail later, the grading methodology of
MZC further penalizes a portfolio solver because in case of
ties it may assign a score that is disproportionate w.r.t. the
solving time difference. This is a drawback for sunny-cp

since, even if it selects the best constituent solver, it requires
an additional amount of time for extracting the features and
for the solver selection. This holds especially in the presence
of a clear dominant solver, like Chuffed for the MZC 2014.
All these difficulties have been recognized by the organizers,
which awarded to sunny-cp an honorable mention.5

Let us now analyze the results. As said, if on the one
hand having Chuffed in the portfolio was undoubtedly ad-
vantageous for us, on the other hand this can also be coun-
terproductive. Indeed, it is impossible to beat it in the nu-
merous times in which it is the best solver, even if sunny-cp
selects it to solve the instance. Moreover, note that the
other solvers of sunny-cp enrolled in the Challenge have
not achieved excellent performance: G12/LazyFD is 8th,
MinisatID is 13th and G12/FD is 16th. Gecode-par is 10th,
but sunny-cp didn’t use this version since Gecode-par is a
parallel solver.6 Finally, G12/CBC, G12/Gurobi, and CPX
have not attended the challenge.7 This setting is inevitably
detrimental for a portfolio. There is a clearly dominant con-
stituent solver, while the others have a rather low contribu-
tion. To boost the performances of sunny-cp we could have
used an ’ad hoc’ training set for the MZC8 but we instead
preferred to measure its performance by using the default
knowledge base because we believe that such solver is more
robust, less prone to overfitting, and more suitable for sce-
narios where Chuffed is not the dominant solver. Indeed,
despite the MZC is surely a valuable setting for evaluating
CP solvers, it is important that a solver is designed to be
good at solving (class of) CP problems rather than being
well ranked at the MZC.

sunny-cp-presolve-open achieved the 4th position, reach-
ing 97.32 points more than sunny-cp-open (7th). As shown
also in [5], the static schedule resulted in an increase in per-
formance. Here, however, the score difference is mainly due
to the higher speed of sunny-cp-presolve-open in case of in-
distinguishable answer, rather than the higher quality of the
solutions. Indeed, in just 9 cases sunny-cp-presolve-open
gave a better answer than sunny-cp-open, while there are
also 6 cases in which sunny-cp-open is better.

If we just focus on the proven and time metrics introduced

5sunny-cp was not eligible for prizes, since it contains solvers
developed by the MZC organizers.
6Gecode-free, the sequential version of Gecode-par, in the
open category would be ranked 12th.
7Opturion CPX [32] is based on CPX, but it is not CPX.
Moreover the constituent solvers of the portfolio may be
obsolete w.r.t. the version submitted to MZC 2014.
8As pointed out also in [39], the good results of a portfolio
solver on a competition can be attributed to the fact that it
could be over-trained.

SOLVER #proven SOLVER time

Chuffed-free 68 Chuffed-free 331.27
sunny-cp-presolve-open 59 Opturion CPX-free 461.05

sunny-cp-open 57 sunny-cp-presolve-open 469.86
Opturion CPX-free 53 sunny-cp-open 488.58

OR-Tools-par 50 OR-Tools-par 491.29
G12/LazyFD-free 46 G12/LazyFD-free 511.28

MinisatID-free 46 Choco-par 553.83
Picat SAT-free 44 Gecode-par 563.65

Choco-par 43 MinisatID-free 566.24
SICStus Prolog-fd 41 iZplus-par 570.30

iZplus-par 41 Picat SAT-free 570.31
Gecode-par 40 SICStus Prolog-fd 598.65

HaifaCSP-free 39 HaifaCSP-free 599.85
Mistral-free 37 Mistral-free 606.75
JaCoP-fd 31 JaCoP-fd 659.17

G12/FD-free 27 G12/FD-free 693.99
Concrete-free 22 Concrete-free 737.02
Picat CP-free 17 Picat CP-free 777.84

Table 4: MZC results considering proven and time metrics.

earlier, we can observe significant variations in the rank. Ta-
ble 4 shows that, by considering proven, the two versions of
sunny-cp would be 2nd and 3rd. Chuffed is still the best
solver, but sometimes it is outperformed by sunny-cp. For
instance, unlike Chuffed, sunny-cp is able to solve all the 25
CSPs of the competition. Again, note that sunny-cp is not
biased towards Chuffed. Figure 2 shows that the number of
times (in percentage) a constituent solver of sunny-cp com-
pletes the search. As can be seen, almost all the solvers find
an optimal solution at least one time. The contribution of
Chuffed is not massive: about one third of the instances.
Looking at the average time results of Table 4, we notice
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Figure 2: Solvers contribution in terms of proven.

that sunny-cp is overtaken by Opturion. This is not sur-
prising: sunny-cp proves more optima, but Opturion is on
average faster.

Looking at the results on the individual instances, on 9
problems sunny-cp is able to outperform all its constituent
solvers participating in the MZC. For 4 instances it is gold
medalist, and for the cyclic-rcpsp problem (5 instances) it is
the overall best solver of the competition.

We conclude this Section by proposing an alternative rank-
ing system. As previously mentioned, we realized that, in
case of indistinguishable answer between two solvers, in the
MZC the gain of a solver depends on the runtime ratio rather
than the runtime difference. For instance, let us suppose
that two solvers s0 and s1 solve a problem p in 1 and 2 second
respectively. The score assigned to s0 is 2/3 = 0.667 while
s1 scores 1/3 = 0.333. The same score would be reached
by the two solvers if time(p, s1) = 2 ∗ time(p, s0). Hence,
if for example time(p, s0) = 400 and time(p, s1) = 800, the
difference between the scores of s0 and s1 would be the same



even if the absolute time difference is 1 second in the first
case, 400 seconds in the second. In our opinion, this scor-
ing methodology could overestimate small time differences
in case of easy instances, as well as underrate big time dif-
ferences in case of medium and hard instances. A possible
workaround to this problem is to assign each solver a score
in [0, 1] that, in case of indistinguishable answer between
two solvers, is linearly proportional to the solving time dif-
ference. We then propose a modified metric MZC-MOD that
differs from the MZC score since, when the answers of s0
and s1 are indistinguishable, it gives to the solvers a re-

ward MZC-MOD(p, si) = 0.5 +
time(p,s1−i)−time(p,si)

2T
where T

is the timeout (i.e., 900 seconds for MZC). With this new
metric, according to the previous examples, if time(p, s0) =
1 and time(p, s1) = 2, then the score difference is mini-
mal since MZC-MOD(p, s0) = 0.5 + 1/2 ∗ 900 = 0.501 and
MZC-MOD(p, s1) = 0.5 − 1/2 ∗ 900 = 0.499. In contrast, if
time(p, s0) = 400 and time(p, s1) = 800 then the differ-
ence is proportionally higher: MZC-MOD(p, s0) = 0.722 and
MZC-MOD(p, s1) = 0.278.
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Opturion CPX-free

sunny-cp-presolve-open
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Figure 3: Score differences between MZC score and MZC-MOD.

Figure 3 depicts the effects of using MZC-MOD in place of
MZC score w.r.t. the first seven positions of the ranking.
The classification with the new score is much more com-
pact and reflects the lower impact of the solving time dif-
ference in case of identical answers. Chuffed is firmly in
the lead, but if compared to the original score loses about
165 points. Except for sunny-cp and Choco, all other ap-
proaches have a deterioration of performance. In particular,
sunny-cp-presolve-open gains 19.82 points surpassing OR-
Tools-par in the 2nd position. Even more noticeable is the
score improvement of sunny-cp-open, that earns about 40
points and 2 positions in the ranking.

5. RELATED WORK
As already mentioned, the only other portfolio solver able

to process MiniZinc files that has attended a MiniZinc Chal-
lenge is based on Numberjack [18]. It is a parallel solver that,
differently from sunny-cp, launches concurrently all its con-
stituent solvers, without making any solver selection and
without extracting any feature. In this work we do not re-
port a direct comparison with this solver since it is a parallel
one and because it achieved rather poor results in MiniZinc
Challenge 2013, perhaps due to some issues in parsing the
FlatZinc language. Indeed, in the MZC 2013 open track
Numberjack scored just 382.06 points while Chuffed scored
1034.63 points.

Other related solvers are CPHydra [31] and Proteus [21].
However, these solvers can handle only CSP instances (en-
coded in XCSP format).

For a comprehensive survey on portfolio approaches ap-
plied to SAT, planning, and QBF problems we refer the
interested reader to [25], for CSP to [1], for ASP to [12].
Concerning the application of portfolio techniques to opti-
mization problems we refer instead the reader to [3,5,16,22,
38, 41]. Among the various proposal, certainly worth men-
tioning are the approaches that turned out to be effective in
different solving challenges. For instance, the SAT portfolio
solvers 3S [23], SATZilla [43], and CSHC [27] respectively
won gold medals in the 2011, 2012, and 2013 editions of the
SAT competition. CPHydra [31] was the winner of the 2008
International Constraint Solver Competition while the ASP
portfolio solver claspfolio [19] won in different tracks in the
2009 and 2011 ASP competitions.

6. CONCLUSIONS
In this paper we described sunny-cp, a sequential port-

folio solver able to solve both satisfaction and optimization
problems defined in MiniZinc language. sunny-cp is aimed
to provide a flexible, configurable, and usable CP portfolio
solver that can be set up and executed by the end users just
like an usual, single CP solver.

Since we already verified in former evaluations the effec-
tiveness of sunny-cp when validated on heterogeneous and
large sets of test instances, in this work we analyzed the re-
sults obtained by two versions of sunny-cp in the MiniZinc
Challenge 2014, the reference competition for evaluating CP
solvers. Despite the grading mechanism of the challenge may
penalize a sequential portfolio solver, sunny-cp turned out
to be competitive even when compared to parallel solvers,
and it was sometimes even able to outperform state-of-the-
art constraint solvers. In this regard, we also proposed and
evaluated an alternative scoring system that, in case of in-
distinguishable quality of the solutions, takes into account
the solving time difference in a more linear way.

The improvement of the state of the art proposed in this
paper is not related to the introduction of a new approach,
but concerns the presentation of a new tool that could serve
as a baseline for future developments. Indeed, a major weak-
ness of portfolio solvers is that their use is actually confined
to annual competitions. In practice, they are often very dif-
ficult to use and compare. We therefore hope that sunny-cp
can take a step forward in encouraging and disseminating
the actual use of CP portfolio solvers.

As a future work we would like to extend the sunny-cp

framework by adding new solvers and functionalities. There
is plenty of lines of research that can be explored: e.g.,
the selection strategies of [24, 27, 31], the impact of using
different distance metrics and features [26], the robustness
towards the k parameter of k-NN algorithm [4], the auto-
mated tuning of different solvers configurations [24], the use
of benchmark generation techniques [20], the evaluation of
different ranking methods [7,14]. Certainly one of the most
promising directions for further research is the extension of
sunny-cp to a parallel environment, where multiple cores
can be used to launch more than one constituent solver
in parallel. In this setting it may be important to devise
and evaluate cooperative strategies between the constituent
solvers, by exploiting and sharing tokens of knowledge like
the no-goods generated by the lazy solvers of the portfolio.
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