120 research outputs found

    Heterologous RNA silencing suppressors from both plant- and animal-infecting viruses support Plum pox virus infection

    Full text link
    [EN] HCPro, the RNA silencing suppressor (RSS) of viruses belonging to the Potyvirus genus in the Potyviridae family, is a multifunctional protein presumably involved in all essential steps of the viral infection cycle. Recent studies have shown that Plum pox potyvirus (PPV) HCPro can be successfully replaced by Cucumber vein yellowing ipomovirus P1b, a sequence unrelated RSS from a virus of the same family. In order to gain insight into the requirement of a particular RSS to establish a successful potyviral infection, we tested the ability of different heterologous RSSs from both plant- and animal-infecting viruses to substitute HCPro. Making use of engineered PPV chimeras, we show that PPV HCPro can be functionally replaced by some, but not all, unrelated RSSs, including the NS1 protein of the mammalian-infecting Influenza A virus. Interestingly, the capacity of a particular RSS to replace HCPro does not strictly correlate with its RNA silencing suppression strength. Altogether, our results suggest that not all suppression strategies are equally suitable for an efficient escape of PPV from the RNA silencing machinery. The approach followed here based on using PPV chimeras in which an under-consideration RSS substitutes for HCPro could further help to study the function of diverse RSSs in a ¿highly-sensitive¿ RNA silencing context, such as that taking place in plant cells during the process of a viral infection.We are especially grateful to those people who sent us plasmids containing the DNA sequence of different viral proteins. We thank Veronique Ziegler-Graff for providing BWYV P0, Ana Giner and Juan Jose Lopez-Moya for providing SPMMV P1, Joel Milner for providing CaMV P6, Maria Rosa Lopez-Huertas and Jose Alcami for providing HIV Tat, Jan Kreuze for providing SPCSV RNase3, and M. Taliansky for providing GRV ORF3. We thank Herman Scholthof and Ariel Rodriguez for providing anti-P19 and anti-NS1 serum, respectively. We are also grateful to David Baulcombe for providing the GFP expression vector and TBSV P19-containing plasmid, and Mark Curtis for providing the pMDC32 destination vector. This work was supported by grants from Spanish MICINN (BIO2010-18541) and the European Union (KBBE-204429). M. C. was the recipient of an 13P fellowship from CSIC-Fondo Social Europeo.Maliogka, VI.; Calvo, M.; Carbonell, A.; Garcia, JA.; Valli, A. (2012). Heterologous RNA silencing suppressors from both plant- and animal-infecting viruses support Plum pox virus infection. Journal of General Virology. 93(7):1601-1611. https://doi.org/10.1099/vir.0.042168-0S16011611937Ala-Poikela, M., Goytia, E., Haikonen, T., Rajamäki, M.-L., & Valkonen, J. P. T. (2011). Helper Component Proteinase of the Genus Potyvirus Is an Interaction Partner of Translation Initiation Factors eIF(iso)4E and eIF4E and Contains a 4E Binding Motif. Journal of Virology, 85(13), 6784-6794. doi:10.1128/jvi.00485-11Ambros, V., & Chen, X. (2007). The regulation of genes and genomes by small RNAs. Development, 134(9), 1635-1641. doi:10.1242/dev.002006Anandalakshmi, R., Pruss, G. J., Ge, X., Marathe, R., Mallory, A. C., Smith, T. H., & Vance, V. B. (1998). A viral suppressor of gene silencing in plants. Proceedings of the National Academy of Sciences, 95(22), 13079-13084. doi:10.1073/pnas.95.22.13079Anandalakshmi, R., Marathe, R., Ge, X., Herr, J. M., Mau, C., Mallory, A., … Vance, V. B. (2000). A Calmodulin-Related Protein That Suppresses Posttranscriptional Gene Silencing in Plants. Science, 290(5489), 142-144. doi:10.1126/science.290.5489.142Ballut, L., Drucker, M., Pugnière, M., Cambon, F., Blanc, S., Roquet, F., … Badaoui, S. (2005). HcPro, a multifunctional protein encoded by a plant RNA virus, targets the 20S proteasome and affects its enzymic activities. Journal of General Virology, 86(9), 2595-2603. doi:10.1099/vir.0.81107-0Baulcombe, D. (2005). RNA silencing. Trends in Biochemical Sciences, 30(6), 290-293. doi:10.1016/j.tibs.2005.04.012Bennasser, Y., Le, S.-Y., Benkirane, M., & Jeang, K.-T. (2005). Evidence that HIV-1 Encodes an siRNA and a Suppressor of RNA Silencing. Immunity, 22(5), 607-619. doi:10.1016/j.immuni.2005.03.010Blanc, S., López-Moya, J.-J., Wang, R., García-Lampasona, S., Thornbury, D. W., & Pirone, T. P. (1997). A Specific Interaction between Coat Protein and Helper Component Correlates with Aphid Transmission of a Potyvirus. Virology, 231(1), 141-147. doi:10.1006/viro.1997.8521Brigneti, G. (1998). Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. The EMBO Journal, 17(22), 6739-6746. doi:10.1093/emboj/17.22.6739Bucher, E., Hemmes, H., de Haan, P., Goldbach, R., & Prins, M. (2004). The influenza A virus NS1 protein binds small interfering RNAs and suppresses RNA silencing in plants. Journal of General Virology, 85(4), 983-991. doi:10.1099/vir.0.19734-0Burgyán, J., & Havelda, Z. (2011). Viral suppressors of RNA silencing. Trends in Plant Science, 16(5), 265-272. doi:10.1016/j.tplants.2011.02.010Carbonell, A., Dujovny, G., García, J. A., & Valli, A. (2012). The Cucumber vein yellowing virus Silencing Suppressor P1b Can Functionally Replace HCPro in Plum pox virus Infection in a Host-Specific Manner. Molecular Plant-Microbe Interactions®, 25(2), 151-164. doi:10.1094/mpmi-08-11-0216Carrington, J. C., Cary, S. M., Parks, T. D., & Dougherty, W. G. (1989). A second proteinase encoded by a plant potyvirus genome. The EMBO Journal, 8(2), 365-370. doi:10.1002/j.1460-2075.1989.tb03386.xCheng, Y.-Q., Liu, Z.-M., Xu, J., Zhou, T., Wang, M., Chen, Y.-T., … Fan, Z.-F. (2008). HC-Pro protein of sugar cane mosaic virus interacts specifically with maize ferredoxin-5 in vitro and in planta. Journal of General Virology, 89(8), 2046-2054. doi:10.1099/vir.0.2008/001271-0Choi, I.-R., Stenger, D. C., & French, R. (2000). Multiple Interactions among Proteins Encoded by the Mite-Transmitted Wheat Streak Mosaic Tritimovirus. Virology, 267(2), 185-198. doi:10.1006/viro.1999.0117Cuellar, W. J., Kreuze, J. F., Rajamaki, M.-L., Cruzado, K. R., Untiveros, M., & Valkonen, J. P. T. (2009). Elimination of antiviral defense by viral RNase III. Proceedings of the National Academy of Sciences, 106(25), 10354-10358. doi:10.1073/pnas.0806042106Delgadillo, M. O., Sáenz, P., Salvador, B., García, J. A., & Simón-Mateo, C. (2004). Human influenza virus NS1 protein enhances viral pathogenicity and acts as an RNA silencing suppressor in plants. Journal of General Virology, 85(4), 993-999. doi:10.1099/vir.0.19735-0DIELEN, A.-S., SASSAKI, F. T., WALTER, J., MICHON, T., MÉNARD, G., PAGNY, G., … GERMAN-RETANA, S. (2010). The 20S proteasome α5 subunit of Arabidopsis thaliana carries an RNase activity and interacts in planta with the Lettuce mosaic potyvirus HcPro protein. Molecular Plant Pathology, 12(2), 137-150. doi:10.1111/j.1364-3703.2010.00654.xDing, S.-W. (2010). RNA-based antiviral immunity. Nature Reviews Immunology, 10(9), 632-644. doi:10.1038/nri2824Ding, S. W., Li, W. X., & Symons, R. H. (1995). A novel naturally occurring hybrid gene encoded by a plant RNA virus facilitates long distance virus movement. The EMBO Journal, 14(23), 5762-5772. doi:10.1002/j.1460-2075.1995.tb00265.xDunoyer, P., & Voinnet, O. (2005). The complex interplay between plant viruses and host RNA-silencing pathways. Current Opinion in Plant Biology, 8(4), 415-423. doi:10.1016/j.pbi.2005.05.012Endres, M. W., Gregory, B. D., Gao, Z., Foreman, A. W., Mlotshwa, S., Ge, X., … Vance, V. (2010). Two Plant Viral Suppressors of Silencing Require the Ethylene-Inducible Host Transcription Factor RAV2 to Block RNA Silencing. PLoS Pathogens, 6(1), e1000729. doi:10.1371/journal.ppat.1000729Garcia-Ruiz, H., Takeda, A., Chapman, E. J., Sullivan, C. M., Fahlgren, N., Brempelis, K. J., & Carrington, J. C. (2010). Arabidopsis RNA-Dependent RNA Polymerases and Dicer-Like Proteins in Antiviral Defense and Small Interfering RNA Biogenesis during Turnip Mosaic Virus Infection  . The Plant Cell, 22(2), 481-496. doi:10.1105/tpc.109.073056Gazzani, S., Lawrenson, T., Woodward, C., Headon, D., & Sablowski, R. (2004). A Link Between mRNA Turnover and RNA Interference in Arabidopsis. Science, 306(5698), 1046-1048. doi:10.1126/science.1101092Giner, A., Lakatos, L., García-Chapa, M., López-Moya, J. J., & Burgyán, J. (2010). Viral Protein Inhibits RISC Activity by Argonaute Binding through Conserved WG/GW Motifs. PLoS Pathogens, 6(7), e1000996. doi:10.1371/journal.ppat.1000996Guo, D., Rajamäki, M.-L., Saarma, M., & Valkonen, J. P. T. (2001). Towards a protein interaction map of potyviruses: protein interaction matrixes of two potyviruses based on the yeast two-hybrid system. Journal of General Virology, 82(4), 935-939. doi:10.1099/0022-1317-82-4-935Guo, D., Spetz, C., Saarma, M., & Valkonen, J. P. T. (2003). Two Potato Proteins, Including a Novel RING Finger Protein (HIP1), Interact with the Potyviral Multifunctional Protein HCpro. Molecular Plant-Microbe Interactions®, 16(5), 405-410. doi:10.1094/mpmi.2003.16.5.405Haas, G., Azevedo, J., Moissiard, G., Geldreich, A., Himber, C., Bureau, M., … Voinnet, O. (2008). Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4. The EMBO Journal, 27(15), 2102-2112. doi:10.1038/emboj.2008.129Haasnoot, J., de Vries, W., Geutjes, E.-J., Prins, M., de Haan, P., & Berkhout, B. (2007). The Ebola Virus VP35 Protein Is a Suppressor of RNA Silencing. PLoS Pathogens, 3(6), e86. doi:10.1371/journal.ppat.0030086Havelda, Z., Hornyik, C., Crescenzi, A., & Burgyán, J. (2003). In Situ Characterization of Cymbidium Ringspot Tombusvirus Infection-Induced Posttranscriptional Gene Silencing in Nicotiana benthamiana. Journal of Virology, 77(10), 6082-6086. doi:10.1128/jvi.77.10.6082-6086.2003Janssen, D., Martín, G., Velasco, L., Gómez, P., Segundo, E., Ruiz, L., & Cuadrado, I. M. (2005). Absence of a coding region for the helper component-proteinase in the genome of cucumber vein yellowing virus, a whitefly-transmitted member of the Potyviridae. Archives of Virology, 150(7), 1439-1447. doi:10.1007/s00705-005-0515-zJin, Y., Ma, D., Dong, J., Jin, J., Li, D., Deng, C., & Wang, T. (2007). HC-Pro Protein of Potato Virus Y Can Interact with Three Arabidopsis 20S Proteasome Subunits In Planta. Journal of Virology, 81(23), 12881-12888. doi:10.1128/jvi.00913-07Jin, Y., Ma, D., Dong, J., Li, D., Deng, C., Jin, J., & Wang, T. (2007). The HC-Pro Protein of Potato Virus Y Interacts with NtMinD of Tobacco. Molecular Plant-Microbe Interactions®, 20(12), 1505-1511. doi:10.1094/mpmi-20-12-1505Kasschau, K. D., & Carrington, J. C. (1995). Requirement for HC-Pro Processing during Genome Amplification of Tobacco Etch Potyvirus. Virology, 209(1), 268-273. doi:10.1006/viro.1995.1254Kasschau, K. D., & Carrington, J. C. (1998). A Counterdefensive Strategy of Plant Viruses. Cell, 95(4), 461-470. doi:10.1016/s0092-8674(00)81614-1Kasschau, K. D., & Carrington, J. C. (2001). Long-Distance Movement and Replication Maintenance Functions Correlate with Silencing Suppression Activity of Potyviral HC-Pro. Virology, 285(1), 71-81. doi:10.1006/viro.2001.0901Kasschau, K. D., Xie, Z., Allen, E., Llave, C., Chapman, E. J., Krizan, K. A., & Carrington, J. C. (2003). P1/HC-Pro, a Viral Suppressor of RNA Silencing, Interferes with Arabidopsis Development and miRNA Function. Developmental Cell, 4(2), 205-217. doi:10.1016/s1534-5807(03)00025-xLakatos, L., Csorba, T., Pantaleo, V., Chapman, E. J., Carrington, J. C., Liu, Y.-P., … Burgyán, J. (2006). Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. The EMBO Journal, 25(12), 2768-2780. doi:10.1038/sj.emboj.7601164Lecellier, C.-H., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., … Voinnet, O. (2005). A Cellular MicroRNA Mediates Antiviral Defense in Human Cells. Science, 308(5721), 557-560. doi:10.1126/science.1108784Li, W.-X., Li, H., Lu, R., Li, F., Dus, M., Atkinson, P., … Ding, S.-W. (2004). Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proceedings of the National Academy of Sciences, 101(5), 1350-1355. doi:10.1073/pnas.0308308100Love, A. J., Laird, J., Holt, J., Hamilton, A. J., Sadanandom, A., & Milner, J. J. (2007). Cauliflower mosaic virus protein P6 is a suppressor of RNA silencing. Journal of General Virology, 88(12), 3439-3444. doi:10.1099/vir.0.83090-0Maia, I. G., Haenni, A.-L., & Bernardi, F. (1996). Potyviral HC-Pro: a multifunctional protein. Journal of General Virology, 77(7), 1335-1341. doi:10.1099/0022-1317-77-7-1335Merits, A., Guo, D., Järvekülg, L., & Saarma, M. (1999). Biochemical and Genetic Evidence for Interactions between Potato A Potyvirus-Encoded Proteins P1 and P3 and Proteins of the Putative Replication Complex. Virology, 263(1), 15-22. doi:10.1006/viro.1999.9926Qian, S., Zhong, X., Yu, L., Ding, B., de Haan, P., & Boris-Lawrie, K. (2009). HIV-1 Tat RNA silencing suppressor activity is conserved across kingdoms and counteracts translational repression of HIV-1. Proceedings of the National Academy of Sciences, 106(2), 605-610. doi:10.1073/pnas.0806822106Qiu, W., Park, J.-W., & Scholthof, H. B. (2002). Tombusvirus P19-Mediated Suppression of Virus-Induced Gene Silencing Is Controlled by Genetic and Dosage Features That Influence Pathogenicity. Molecular Plant-Microbe Interactions®, 15(3), 269-280. doi:10.1094/mpmi.2002.15.3.269Roth, B. (2004). Plant viral suppressors of RNA silencing. Virus Research, 102(1), 97-108. doi:10.1016/j.virusres.2004.01.020Roudet-Tavert, G., German-Retana, S., Delaunay, T., Delécolle, B., Candresse, T., & Le Gall, O. (2002). Interaction between potyvirus helper component-proteinase and capsid protein in infected plants. Journal of General Virology, 83(7), 1765-1770. doi:10.1099/0022-1317-83-7-1765Roudet-Tavert, G., Michon, T., Walter, J., Delaunay, T., Redondo, E., & Le Gall, O. (2007). Central domain of a potyvirus VPg is involved in the interaction with the host translation initiation factor eIF4E and the viral protein HcPro. Journal of General Virology, 88(3), 1029-1033. doi:10.1099/vir.0.82501-0Sáenz, P., Salvador, B., Simón-Mateo, C., Kasschau, K. D., Carrington, J. C., & García, J. A. (2002). Host-Specific Involvement of the HC Protein in the Long-Distance Movement of Potyviruses. Journal of Virology, 76(4), 1922-1931. doi:10.1128/jvi.76.4.1922-1931.2002Shimura, H., & Pantaleo, V. (2011). Viral induction and suppression of RNA silencing in plants. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1809(11-12), 601-612. doi:10.1016/j.bbagrm.2011.04.005Silhavy, D. (2002). A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. The EMBO Journal, 21(12), 3070-3080. doi:10.1093/emboj/cdf312Stenger, D. C., French, R., & Gildow, F. E. (2005). Complete Deletion of Wheat Streak Mosaic Virus HC-Pro: a Null Mutant Is Viable for Systemic Infection. Journal of Virology, 79(18), 12077-12080. doi:10.1128/jvi.79.18.12077-12080.2005Syller, J. (2005). The roles and mechanisms of helper component proteins encoded by potyviruses and caulimoviruses. Physiological and Molecular Plant Pathology, 67(3-5), 119-130. doi:10.1016/j.pmpp.2005.12.005Valli, A., Martín-Hernández, A. M., López-Moya, J. J., & García, J. A. (2006). RNA Silencing Suppression by a Second Copy of the P1 Serine Protease ofCucumber Vein Yellowing Ipomovirus, a Member of the FamilyPotyviridaeThat Lacks the Cysteine Protease HCPro. Journal of Virology, 80(20), 10055-10063. doi:10.1128/jvi.00985-06Valli, A., L��pez-Moya, J. J., & Garc��a, J. A. (2009). RNA Silencing and its Suppressors in the Plant-virus Interplay. Encyclopedia of Life Sciences. doi:10.1002/9780470015902.a0021261Valli, A., Oliveros, J. C., Molnar, A., Baulcombe, D., & Garcia, J. A. (2011). The specific binding to 21-nt double-stranded RNAs is crucial for the anti-silencing activity of Cucumber vein yellowing virus P1b and perturbs endogenous small RNA populations. RNA, 17(6), 1148-1158. doi:10.1261/rna.2510611Vargason, J. M., Szittya, G., Burgyán, J., & Hall, T. M. T. (2003). Size Selective Recognition of siRNA by an RNA Silencing Suppressor. Cell, 115(7), 799-811. doi:10.1016/s0092-8674(03)00984-xVoinnet, O., Pinto, Y. M., & Baulcombe, D. C. (1999). Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proceedings of the National Academy of Sciences, 96(24), 14147-14152. doi:10.1073/pnas.96.24.14147Yambao, M. L. M., Masuta, C., Nakahara, K., & Uyeda, I. (2003). The central and C-terminal domains of VPg of Clover yellow vein virus are important for VPg–HCPro and VPg–VPg interactions. Journal of General Virology, 84(10), 2861-2869. doi:10.1099/vir.0.19312-0Young, B. A., Stenger, D. C., Qu, F., Morris, T. J., Tatineni, S., & French, R. (2012). Tritimovirus P1 functions as a suppressor of RNA silencing and an enhancer of disease symptoms. Virus Research, 163(2), 672-677. doi:10.1016/j.virusres.2011.12.019Zilian, E., & Maiss, E. (2011). Detection of plum pox potyviral protein–protein interactions in planta using an optimized mRFP-based bimolecular fluorescence complementation system. Journal of General Virology, 92(12), 2711-2723. doi:10.1099/vir.0.033811-

    Identification of Ilarviruses in almond and cherry fruit trees using nested PCR assays

    Get PDF
    In this study nested PCR assays have been developed for the detection of Prune dwarf virus (PDV), Prunus necrotic ringspot virus (PNRSV) and Apple mosaic virus (ApMV) modifying a previously reported assay for the generic detection of ilarviruses. In all cases one generic upstream primer was used along with a virus-specific downstream primer in respective nested PCR assays. The application of the same thermocycling profile allowed all amplifications to run in parallel. Ilarvirus isolates from different hosts were used for the evaluation of the detection range of the assays, which were afterwards applied for screening almond and cherry plant material. In almond trees the incidence of PNRSV and PDV was 41% and 21.5%, respectively. In cherry orchards the opposite was observed with PDV (56.6%) being the prevalent virus followed by PNRSV (19.4%). Mixed infections with both viruses were also encountered in approximately 10 and 17% of cherry and almond trees, respectively. ApMV was not detected in any of the samples tested. This is the first extensive survey conducted in Greece in order to monitor the distribution of these viruses using molecular assays. Keywords: Prune dwarf virus, Prunus necrotic ringspot virus, Apple mosaic virus, cherry, almond, nested PC

    Virus variants with differences in the P1 protein coexist in a Plum pox virus population and display particular host-dependent pathogenicity features

    Full text link
    [EN] Subisolates segregated from an M-type Plum pox virus (PPV) isolate, PPV-PS, differ widely in pathogenicity despite their high degree of sequence similarity. A single amino acid substitution, K109E, in the helper component proteinase (HCPro) protein of PPV caused a significant enhancement of symptom severity in herbaceous hosts, and notably modified virus infectivity in peach seedlings. The presence of this substitution in certain subisolates that induced mild symptoms in herbaceous hosts and did not infect peach seedlings suggested the existence of uncharacterized attenuating factors in these subisolates. In this study, we show that two amino acid changes in the P1 protein are specifically associated with the mild pathogenicity exhibited by some PS subisolates. Site-directed mutagenesis studies demonstrated that both substitutions, W29R and V139E, but especially W29R, resulted in lower levels of virus accumulation and symptom severity in a woody host, Prunus persica. Furthermore, when W29R and V139E mutations were expressed concomitantly, PPV infectivity was completely abolished in this host. In contrast, the V139E substitution, but not W29R, was found to be responsible for symptom attenuation in herbaceous hosts. Deep sequencing analysis demonstrated that the W29R and V139E heterogeneities already existed in the original PPV-PS isolate before its segregation in different subisolates by local lesion cloning. These results highlight the potential complexity of potyviral populations and the relevance of the P1 protein of potyviruses in pathogenesis and viral adaptation to the host.We wish to thank Elvira Dominguez for technical assistance. This work was supported by grants BIO2010-18541 from the Spanish Ministerio de Educacion y Ciencia (MEC), SAL/0185/2006 from Comunidad de Madrid and KBBE-204429 from the European Union. B. S. was a recipient of a Formacion de Personal Investigador fellowship from MEC.Maliogka, VI.; Salvador, B.; Carbonell, A.; Saenz, P.; San Leon, D.; Oliveros, JC.; Delgadillo, MO.... (2012). Virus variants with differences in the P1 protein coexist in a Plum pox virus population and display particular host-dependent pathogenicity features. Molecular Plant Pathology. 13(8):877-886. https://doi.org/10.1111/j.1364-3703.2012.00796.xS877886138Adams, M. J., Antoniw, J. F., & Fauquet, C. M. (2004). Molecular criteria for genus and species discrimination within the family Potyviridae. Archives of Virology, 150(3), 459-479. doi:10.1007/s00705-004-0440-6Ayme, V., Petit-Pierre, J., Souche, S., Palloix, A., & Moury, B. (2007). Molecular dissection of the potato virus Y VPg virulence factor reveals complex adaptations to the pvr2 resistance allelic series in pepper. Journal of General Virology, 88(5), 1594-1601. doi:10.1099/vir.0.82702-0Biebricher, C. K., & Eigen, M. (s. f.). What Is a Quasispecies? Quasispecies: Concept and Implications for Virology, 1-31. doi:10.1007/3-540-26397-7_1Brantley, J. D., & Hunt, A. G. (1993). The N-terminal protein of the polyprotein encoded by the potyvirus tobacco vein mottling virus is an RNA-binding protein. Journal of General Virology, 74(6), 1157-1162. doi:10.1099/0022-1317-74-6-1157Charron, C., Nicolaï, M., Gallois, J.-L., Robaglia, C., Moury, B., Palloix, A., & Caranta, C. (2008). Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. The Plant Journal, 54(1), 56-68. doi:10.1111/j.1365-313x.2008.03407.xChiang, C.-H., Lee, C.-Y., Wang, C.-H., Jan, F.-J., Lin, S.-S., Chen, T.-C., … Yeh, S.-D. (2007). Genetic analysis of an attenuated Papaya ringspot virus strain applied for cross-protection. European Journal of Plant Pathology, 118(4), 333-348. doi:10.1007/s10658-007-9130-zChung, B. Y.-W., Miller, W. A., Atkins, J. F., & Firth, A. E. (2008). An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences, 105(15), 5897-5902. doi:10.1073/pnas.0800468105Domingo, E., & Holland, J. J. (1997). RNA VIRUS MUTATIONS AND FITNESS FOR SURVIVAL. Annual Review of Microbiology, 51(1), 151-178. doi:10.1146/annurev.micro.51.1.151EIGEN, M. (1996). On the nature of virus quasispecies. Trends in Microbiology, 4(6), 216-218. doi:10.1016/0966-842x(96)20011-3Hajimorad, M. R., Wen, R.-H., Eggenberger, A. L., Hill, J. H., & Maroof, M. A. S. (2011). Experimental Adaptation of an RNA Virus Mimics Natural Evolution. Journal of Virology, 85(6), 2557-2564. doi:10.1128/jvi.01935-10Holmes, E. C., & Moya, A. (2002). Is the Quasispecies Concept Relevant to RNA Viruses? Journal of Virology, 76(1), 460-462. doi:10.1128/jvi.76.1.460-462.2002Jenkins, G. M., Worobey, M., Woelk, C. H., & Holmes, E. C. (2001). Evidence for the Non-quasispecies Evolution of RNA Viruses. Molecular Biology and Evolution, 18(6), 987-994. doi:10.1093/oxfordjournals.molbev.a003900Jridi, C., Martin, J.-F., Marie-Jeanne, V., Labonne, G., & Blanc, S. (2006). Distinct Viral Populations Differentiate and Evolve Independently in a Single Perennial Host Plant. Journal of Virology, 80(5), 2349-2357. doi:10.1128/jvi.80.5.2349-2357.2006Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics, 26(5), 589-595. doi:10.1093/bioinformatics/btp698López-Moya, J. J., & Garcı́a, J. A. (2000). Construction of a stable and highly infectious intron-containing cDNA clone of plum pox potyvirus and its use to infect plants by particle bombardment. Virus Research, 68(2), 99-107. doi:10.1016/s0168-1702(00)00161-1Moxon, S., Schwach, F., Dalmay, T., MacLean, D., Studholme, D. J., & Moulton, V. (2008). A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics, 24(19), 2252-2253. doi:10.1093/bioinformatics/btn428Nakahara, K. S., Shimada, R., Choi, S.-H., Yamamoto, H., Shao, J., & Uyeda, I. (2010). Involvement of the P1 Cistron in Overcoming eIF4E-Mediated Recessive Resistance Against Clover yellow vein virus in Pea. Molecular Plant-Microbe Interactions®, 23(11), 1460-1469. doi:10.1094/mpmi-11-09-0277Ohshima, K., Akaishi, S., Kajiyama, H., Koga, R., & Gibbs, A. J. (2009). Evolutionary trajectory of turnip mosaic virus populations adapting to a new host. Journal of General Virology, 91(3), 788-801. doi:10.1099/vir.0.016055-0Pruss, G., Ge, X., Shi, X. M., Carrington, J. C., & Bowman Vance, V. (1997). Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. The Plant Cell, 9(6), 859-868. doi:10.1105/tpc.9.6.859Rajamäki, M.-L., Kelloniemi, J., Alminaite, A., Kekarainen, T., Rabenstein, F., & Valkonen, J. P. T. (2005). A novel insertion site inside the potyvirus P1 cistron allows expression of heterologous proteins and suggests some P1 functions. Virology, 342(1), 88-101. doi:10.1016/j.virol.2005.07.019Rohožková, J., & Navrátil, M. (2011). P1 peptidase – a mysterious protein of family Potyviridae. Journal of Biosciences, 36(1), 189-200. doi:10.1007/s12038-011-9020-6Sáenz, P., Riechmann, J. L., Dallot, S., Quiot, L., Garcı́a, J. A., Cervera, M. T., & Quiot, J.-B. (2000). Identification of a pathogenicity determinant of Plum pox virus in the sequence encoding the C-terminal region of protein P3+6K1. Journal of General Virology, 81(3), 557-566. doi:10.1099/0022-1317-81-3-557Sáenz, P., Quiot, L., Quiot, J.-B., Candresse, T., & García, J. A. (2001). Pathogenicity Determinants in the Complex Virus Population of a Plum pox virus Isolate. Molecular Plant-Microbe Interactions®, 14(3), 278-287. doi:10.1094/mpmi.2001.14.3.278Salvador, B., García, J. A., & Simón-Mateo, C. (2006). Causal agent of sharka disease: Plum pox virus genome and function of gene products. EPPO Bulletin, 36(2), 229-238. doi:10.1111/j.1365-2338.2006.00979.xSalvador, B., Delgadillo, M. O., Sáenz, P., García, J. A., & Simón-Mateo, C. (2008). Identification of Plum pox virus Pathogenicity Determinants in Herbaceous and Woody Hosts. Molecular Plant-Microbe Interactions®, 21(1), 20-29. doi:10.1094/mpmi-21-1-0020SALVADOR, B., SAÉNZ, P., YANGÜEZ, E., QUIOT, J. B., QUIOT, L., DELGADILLO, M. O., … SIMÓN-MATEO, C. (2008). Host-specific effect of P1 exchange between two potyviruses. Molecular Plant Pathology, 9(2), 147-155. doi:10.1111/j.1364-3703.2007.00450.xSoumounou, Y., & Laliberte, J.-F. (1994). Nucleic acid-binding properties of the P1 protein of turnip mosaic potyvirus produced in Escherichia coli. Journal of General Virology, 75(10), 2567-2573. doi:10.1099/0022-1317-75-10-2567Suehiro, N., Natsuaki, T., Watanabe, T., & Okuda, S. (2004). An important determinant of the ability of Turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. Journal of General Virology, 85(7), 2087-2098. doi:10.1099/vir.0.79825-0Valli, A., Martín-Hernández, A. M., López-Moya, J. J., & García, J. A. (2006). RNA Silencing Suppression by a Second Copy of the P1 Serine Protease ofCucumber Vein Yellowing Ipomovirus, a Member of the FamilyPotyviridaeThat Lacks the Cysteine Protease HCPro. Journal of Virology, 80(20), 10055-10063. doi:10.1128/jvi.00985-06Valli, A., López-Moya, J. J., & García, J. A. (2007). Recombination and gene duplication in the evolutionary diversification of P1 proteins in the family Potyviridae. Journal of General Virology, 88(3), 1016-1028. doi:10.1099/vir.0.82402-0Vancanneyt, G., Schmidt, R., O’Connor-Sanchez, A., Willmitzer, L., & Rocha-Sosa, M. (1990). Construction of an intron-containing marker gene: Splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Molecular and General Genetics MGG, 220(2), 245-250. doi:10.1007/bf00260489Verchot, J., & Carrington, J. C. (1995). Debilitation of plant potyvirus infectivity by P1 proteinase-inactivating mutations and restoration by second-site modifications. Journal of Virology, 69(3), 1582-1590. doi:10.1128/jvi.69.3.1582-1590.1995Verchot, J., & Carrington, J. C. (1995). Evidence that the potyvirus P1 proteinase functions in trans as an accessory factor for genome amplification. Journal of Virology, 69(6), 3668-3674. doi:10.1128/jvi.69.6.3668-3674.1995Verchot, J., Koonin, E. V., & Carrington, J. C. (1991). The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus-encoded proteinase. Virology, 185(2), 527-535. doi:10.1016/0042-6822(91)90522-

    Specific Real-Time PCR for the Detection and Absolute Quantitation of Grapevine Roditis Leaf Discoloration-Associated Virus, an EPPO Alert Pathogen

    Get PDF
    Grapevine Roditis leaf discoloration-associated virus (GRLDaV) is an emerging grapevine pathogen included in the European and Mediterranean Plant Protection Organization (EPPO) alert list due to its ability to damage grapevine crops and cause production losses. This work aimed to develop a specific and reliable diagnostic tool that would contribute to preventing the spread of this pathogen. Therefore, a TaqMan real-time quantitative PCR was developed. The method was validated according to EPPO guidelines showing a high degree of analytical sensitivity, analytical specificity, selectivity, and repeatability and reproducibility. The sensitivity of this method is much higher than the sensitivity reached by previously reported methods even when tested in crude extracts, which could allow rapid testing by avoiding nucleic acid extraction steps. The method was also able to detect GRLDaV isolates from all the geographic origins reported so far, despite their high degree of genetic diversity. In addition, this new technique has been successfully applied for the quantitative detection of GRLDaV in plant material and two mealybug species, Planococcus citri and Pseudococcus viburni. In conclusion, the methodology developed herein represents a significant contribution to the diagnosis and control of this emerging pathogen in grapevine

    A Novel and Highly Inclusive Quantitative Real-Time RT-PCR Method for the Broad and Efficient Detection of Grapevine Leafroll Associated Virus 1

    Get PDF
    Grapevine (Vitis vinifera L.) is one of the most important crops in the world due to its economic and social impact. Like many other crops, grapevine is susceptible to different types of diseases caused by pathogenic microorganisms. Grapevine leafroll-associated virus 1 (GLRaV-1) is a virus associated with grapevine leafroll disease and it is considered at the national and European level as a pathogen that must be absent in propagative plant material. For this reason, the availability of specific, sensitive and reliable detection techniques to ascertain the sanitary status of the plants is of great importance. The objective of this research was the development of a new GLRaV-1 detection method based on a TaqMan quantitative real-time RT-PCR targeted to the coat protein genomic region and including a host internal control in a duplex reaction. To this end, three new GLRaV-1 full genomes were recovered by HTS and aligned with all sequences available in the databases. The method has been validated following EPPO standards and applied for the diagnosis of field plant material and transmission vectors. The new protocol designed has turned out to be highly sensitive as well as much more specific than the current available methods for the detection and absolute quantitation of GLRaV-1 viral titer

    GRAPEVINE VIRUS DISEASES:ECONOMIC IMPACT AND CURRENT ADVANCES IN VIRAL PROSPECTION AND MANAGEMENT

    Full text link

    Recent Advances on the Multiplex Molecular Detection of Plant Viruses and Viroids

    Get PDF
    [EN] Plant viruses are still one of the main contributors to economic losses in agriculture. It has been estimated that plant viruses can cause as much as 50 billion euros loss worldwide, per year. This situation may be worsened by recent climate change events and the associated changes in disease epidemiology. Reliable and early detection methods are still one of the main and most effective actions to develop control strategies for plant viral diseases. During the last years, considerable progress has been made to develop tools with high specificity and low detection limits for use in the detection of these plant pathogens. Time and cost reductions have been some of the main objectives pursued during the last few years as these increase their feasibility for routine use. Among other strategies, these objectives can be achieved by the simultaneous detection and (or) identification of several viruses in a single assay. Nucleic acid-based detection techniques are especially suitable for this purpose. Polyvalent detection has allowed the detection of multiple plant viruses at the genus level. Multiplexing RT polymerase chain reaction (PCR) has been optimized for the simultaneous detection of more than 10 plant viruses/viroids. In this short review, we provide an update on the progress made during the last decade on techniques such as multiplex PCR, polyvalent PCR, non-isotopic molecular hybridization techniques, real-time PCR, and array technologies to allow simultaneous detection of multiple plant viruses. Also, the potential and benefits of the powerful new technique of deep sequencing/next-generation sequencing are described.This work was funded by grant BIO2017-88321-R from the Spanish Direccion General de Investigacion Cientifica y Tecnica (DGICYT) and the Prometeo Program GV2014/010 from the Generalitat Valenciana.Pallás Benet, V.; Sanchez Navarro, JÁ.; James, D. (2018). Recent Advances on the Multiplex Molecular Detection of Plant Viruses and Viroids. Frontiers in Microbiology. 9. https://doi.org/10.3389/fmicb.2018.02087S
    corecore