290 research outputs found

    A murine model of cerebral cavernous malformations with acute hemorrhage

    Get PDF
    Cavernomas are multi-lumen and blood-filled vascular malformations which form in the brain and the spinal cord. They lead to hemorrhage, epileptic seizures, neurological deficits, and paresthesia. An effective medical treatment is still lacking, and the available murine models for cavernomas have several limitations for preclinical studies. These include disease phenotypes that differ from human diseases, such as restriction of the lesions to the cerebellum, and absence of acute hemorrhage. Additional limitations of current murine models include rapid development of lesions, which are lethal before the first month of age. Here, we have characterized a murine model that recapitulates features of the human disease: lesions develop after weaning throughout the entire CNS, including the spinal cord, and undergo acute hemorrhage. This provides a preclinical model to develop new drugs for treatment of acute hemorrhage in the brain and spinal cord, as an unmet medical emergency for patients with cavernomas

    From Megabits to CPU Ticks: Enriching a Demand Trace in the Age of MEC

    Get PDF
    All the content consumed by mobile users, be it a web page or a live stream, undergoes some processing along the way; as an example, web pages and videos are transcoded to fit each device’s screen. The recent multi-access edge computing (MEC) paradigm envisions performing such processing within the cellular network, as opposed to resorting to a cloud server on the Internet. Designing a MEC network, i.e., placing and dimensioning the computational facilities therein, requires information on how much computational power is required to produce the contents needed by the users. However, real-world demand traces only contain information on how much data is downloaded. In this paper, we demonstrate how to enrich demand traces with information about the computational power needed to process the different types of content, and we show the substantial benefit that can be obtained from using such enriched traces for the design of MEC-based networks.This work is supported by the European Commission through the H2020 projects 5G-TRANSFORMER (Project ID 761536) and 5G-EVE (Project ID 815074)

    The exploration of eastern Mediterranean deep hypersaline anoxic basins with MODUS: a significant example of technology spin-off from the Geostar Program

    Get PDF
    A significant example of technological spin-off from the GEOSTAR project is represented by the special-purpose instrumented module, based on the deep-sea ROV MODUS, which was developed in the framework of the EU-sponsored project BIODEEP. The goal to be achieved has been defined as the exploration, through real-time video images, measurements and accurate video-guided sampling, of the deep hypersaline anoxic basins of the eastern Mediterranean Sea at water depths well exceeding 3000 meters. Due to their peculiar characteristics, these basins are one of the most extreme environments on Earth and represent a site of utmost interest for their geochemical and microbial resources. The paper presents the strategies and the main results achieved during the two cruises carried out within the BIODEEP project

    Cooperative Localization Enhancement through GNSS Raw Data in Vehicular Networks

    Get PDF
    The evolution and integration of communication networks and positioning technologies are evolving at a fast pace in the framework of vehicular systems. The mutual dependency of such two capabilities can enable several new cooperative paradigms, whose adoption is however slowed down by the lack of suitable open protocols, especially related to the positioning and navigation domain. In light of this, the paper introduces a novel vehicular message type, namely the Cooperative Enhancement Message (CEM), and an associated open protocol to enable the sharing of Global Navigation Satellite Systems (GNSS) raw measurements among connected vehicles. The proposed CEM aims at extending existent approaches such as Cooperative Awareness Messages (CAM) and Collective Perception Messages (CPM) by complementing their paradigms with a cooperative enhancement of the localization accuracy, precision, and integrity proposed by state-of-the-art solutions. Besides the definition of CEMs and a related protocol, a validation of the approach is proposed through a novel simulation framework. A preliminary analysis of the network performance is presented in the case where CEM and CAM transmissions coexist and are concurrently used to support cooperative vehicle applications

    Support of Safety Services through Vehicular Communications: The Intersection Collision Avoidance Use Case

    Get PDF
    Cooperative systems are based on the periodical exchange of standardized information, thanks to which vehicles can advertise their presence, position and the direction they are moving to, and execute sophisticated C-ITS applications that can detect potentially dangerous situations and properly react. The technological pillar, which must enable a Vehicular ad Hoc Network (VANET), is now being debated: the candidates are the traditional WiFi-based approach and the upcoming cellular one. The application effectiveness, however, depends not only on the technology, but also on how fast it is adopted and becomes widespread, i.e., the so-called technology Penetration Rate (PR). In this paper, simulation is used to evaluate the Intersection Collision Avoidance (ICA) application for both candidate technologies, and evaluated as a function of the technology PR.This work was partially supported by FCA through the DiVe project, by the C.A.R.S. center at Politecnico di Torino, and by the H2020 5G-TRANSFORMER project (Project ID 761536

    Exhumation and update of a 25 year old data bank on the Messinian in Italy

    Get PDF
    The end product of a three years long research project on the distribution of Messinian age sediments in Italy, carried out by the Operational Unit 5.2.10 of the Progetto Finalizzato Geodinamica CNR, is represented by a data bank and a series of graphic outputs published in 1983 in a 467 pages long volume. Publication n. 514 described 610 subsurface sections from commercial wells and 245 measured sections from land. Outputs included graphic logs and a number of maps, originally produced at the scale of 1:1.500.000, showing the location of the sections or wells, the presence of the various units identified, and their thickness. Maps showing numerical data were presented as mean values per surface unit, each unit being 10’ x 10’ wide (~320 km2). Most of the data presented, with special reference to the commercial wells, were unpublished. But now, 25 years later, they may well be discussed openly, revealing their terrific geodynamic implications. The short duration of the Messinian Salinity Crisis (MSC), now astrochronologically calibrated with unprecedented precision (initiation of the crisis at 5.96 Ma, intra-Messinian unconformity at 5.62, initiation of the Lago-mare biofacies at 5.41 Ma, termination of the crisis at 5.33 Ma) in agreement with the 0.5 my estimated in 1983, is such that these computer generated maps can still provide a number of paleogeographic information and contain a strong geodynamic message. Important variations in thickness are recorded in the various lithologic units referred to the Messinian. Total thickness ranges from negative, where erosional gaps exist (i.e. at the foot of the Alps) to over 1000 m. High thicknesses are recorded in two different situations: at the depocenter of backarc and wedge-top evaporitic basins and in the Apennine foredeep, where sedimentation was essentially not evaporitic and/or with clastic gypsum. The top of the Messinian formations (the Miocene/Pliocene boundary) documented in wells and land outcrops has a vertical range in excess of 7000 m. The minimum elevation recorded is -5365 m a.s.l. in the area of the Po delta. The maximum elevation is 1806 m a.s.l. in central Apennines. In Sicily the elevation of the top of the Messinian (base of the Pliocene) ranges from -1156 m to 721 m a.s.l. (mean value per surface unit). A number of new information is now available as a result of exploration and/or production wells and surface exposures obtained in the last 25 years. We present an updated view for the northern Italy limited to the Po Pain and the southern border of the Alps. ENI geologists greatly contributed to the subsurface geology thanks to the interpretation of over 30000 km of seismic profiles and 1800 wells. New contributions include: − individuation of superimposed buried paleosols, indicative of different paleoclimate conditions in the Messinian succession cored in the Malossa field − persistent occurrence of dinoflagellates of paratethyian affinity (Galeacysta etrusca zone) in the post-evaporitic Messinian − evaluation of the Messinian sea level drop reconstructed by the geometry of the depositional architecture in the Venetian basin − new stratigraphic data from land exposures in the Venetian-Friulian Basin and in the Lake Garda area From a geodynamic point of view, the Po basin is the foredeep of the Apennine chain (accretionary complex) but it has been also the foreland basin of the south-verging Alps. In a broader geodynamic perspective the Mediterranean is a small ocean basin, that as a result of plate motions lost its connections with the Indian Ocean in Middle Miocene times, becoming an W-E elongated gulf tributary of the Atlantic Ocean. Being surrounded by orogenic belts active in Neogene times and crossed by the Maghrebian-Apenninic chain where it reaches its greater N-S width (~1200 km), the Mediterranean basin behaves as an amplifier of the climatic signal with occasional catastrophic episodes, as the MSC. The rate of deposition during the short-lived stage of maximum dessication was three order of magnitude greater than both prior and after the crisis. This is by far the greatest sea level drop registered in the entire history of our planet (1500 m in a few thousands years) causing the deposition of one million km3 of salts, the annihilation of the entire marine fauna living in the Mediterranean basin prior to its dessication, the deep entrenchment of the major rivers that had to adapt their course to the substantial change undergone by base level of erosion, the creation of erosional surfaces on the passive-type basin margins (as the south-verging Alps in Late Miocene times). The Adriatic sea is now the shallowest basin of the Mediterranean, but in Messinian times it was the deep, rapidly subsiding depocenter of the Apenninic foredeep. Its NW prolongation extended as far as the foot the Western Alps arc, in the Piedmont basin, some 600 km far from the present day coastline. There, the marine fossiliferous sediments of early Messinian and early Pliocene age indicate bathyal depths, but Messinian evaporites are recorded (in outcrops and/or in wells) only in the Apennine side. The Alpine margin is conversely characterized by erosional surfaces (sequence boundaries) and lacustrine sediments. The hydrologic budget that is now, and supposedly was in Messinian times, strongly negative in the Mediterranean basin, could well be positive in this northernmost portion, where the Alpine chain reached elevations even greater than the present ones, and the connection with the NNW-SSE trending sector of the Apennine foredeep was prevented by the “dorsale ferrarese” structure. The coherent picture deriving by the old, large data bank and the new acquisitions suggest that a lake was in existence in the depocenter of the Apenninic foredeep, with some connections with the Paratethyan basins to the east. The water table of the lake was some hundreds (300-500 m) meters below the level of the global ocean. Sedimentary composition indicates that the source area was from the north, not from the west (as it is nowadays). The same is true for the northern Adriatic, where provenance of the clastics is from the north (Eastern Alps), not from the west (Western and Central Alps). Recent studies proved that the influence of the Po drainage system likely started only in the early-middle Pleistocene. Lithogenesis, orogenesis, and morphogenesis are different processes that in general occur in successive phases. The Messinian events are so drastic and short-lived that their reconstruction requires a number of precise observational data but also a broad 3D perspective. Isopach map reconstructions are planned to reach the goal of a fully acceptable interpretation

    Tracking-Free Determination of Single-Cell Displacements and Division Rates in Confluent Monolayers

    Get PDF
    A biological tissue is an ensemble of soft cells in close physical contact. Events such as cell-shape changes and, more rarely, cell-divisions and apoptosis continuously occur in a tissue, whose collective behavior is set by the cumulative occurrence of such events. In this complex environment, quantifying the single-cell dynamics is key to extract quantitative information to be used to capture the fundamental ingredients of this collective tissue dynamics for validating the predictions of models and numerical simulations. However, tracking the motion of each cell in a dense assembly, even in controlled in vitro settings, is a demanding task, because of a combination of different factors, such as poor image quality, cell shape variability and cell deformability. Here we show that Differential Dynamic Microscopy (DDM), an approach that provides a characterization of the sample structure and dynamics at various spatial frequencies (wave-vectors), can be used successfully to extract quantitative information about a confluent monolayer of Madin-Darby Canine Kidney (MDCK) epithelial cells. In particular, combining structural and dynamical information obtained at different wave-vectors, we show that DDM can provide the single-cell mean squared displacement and the cell division rate at various stages during the temporal evolution of the monolayer. In contrast with tracking algorithms, which require expert supervision and a considerate choice of the analysis parameters, DDM analysis can be run in an automated fashion and yields an unbiased quantification of the dynamic processes under scrutiny, thus providing a powerful means to probe the single-cell dynamics within dense cell collectives

    The exploration of Eastern Mediterranean deep hypersaline anoxic basins with MODUS: a significant example of technology spin-off from the GEOSTAR program

    Get PDF
    A significant example of technological spin-off from the GEOSTAR project is represented by the special-purpose instrumented module, based on the deep-sea ROV MODUS, which was developed in the framework of the EU-sponsored project BIODEEP. The goal to be achieved has been defined as the exploration, through real-time video images, measurements and accurate video-guided sampling, of the deep hypersaline anoxic basins of the eastern Mediterranean Sea at water depths well exceeding 3000 meters. Due to their peculiar characteristics, these basins are one of the most extreme environments on Earth and represent a site of utmost interest for their geochemical and microbial resources. The paper presents the strategies and the main results achieved during the two cruises carried out within the BIODEEP project
    corecore