
This is a postprint version of the following published document:

Malandrino, F., Chiasserini, C. F., Avino, G., Malinverno, M. y
Kirkpatrick, S.(2018). From Megabits to CPU Ticks: Enriching a
Demand Trace in the Age of MEC. IEEE Transactions on Big
Data.

DOI: https://doi.org/10.1109/TBDATA.2018.2867025

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE

must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes,

creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288500893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

From Megabits to CPU Ticks:
Enriching a Demand Trace in the Age of MEC
Francesco Malandrino, Member, IEEE, Carla-Fabiana Chiasserini, Fellow, IEEE, Giuseppe Avino,

Marco Malinverno, Scott Kirkpatrick, Life Fellow, IEEE

✦

Abstract—All the content consumed by mobile users, be it a web page

or a live stream, undergoes some processing along the way; as an ex-

ample, web pages and videos are transcoded to fit each device’s screen.

The recent multi-access edge computing (MEC) paradigm envisions

performing such processing within the cellular network, as opposed to

resorting to a cloud server on the Internet. Designing a MEC network,

i.e., placing and dimensioning the computational facilities therein, re-

quires information on how much computational power is required to

produce the contents needed by the users. However, real-world demand

traces only contain information on how much data is downloaded. In this

paper, we demonstrate how to enrich demand traces with information

about the computational power needed to process the different types of

content, and we show the substantial benefit that can be obtained from

using such enriched traces for the design of MEC-based networks.

1 INTRODUCTION

Dynamic web pages, targeted advertisement, user-
generated content have all increased the computation re-
quired to assemble the pages displayed by web browsers.
Mobile services, and the mobile devices consuming them,
have made this trend even more evident, and virtually
all content mobile users see is the result of multiple steps
of real-time, on-the-fly processing. Prominent examples in-
clude videos, that are transcoded to match the screen size
and resolution of the device playing them, and social net-
works, which decide what to show to their users based on
their identity and location.

Where such processing ought to be performed is a fun-
damental question. The traditional approach was to use ad
hoc servers placed within each content provider’s network;
cloud computing, with shared virtual servers placed in the
Internet, provides a more efficient but substantially equiva-
lent alternative [1]. The recent multi-access edge computing
(MEC) paradigm takes a different approach: it envisions
moving services, i.e., the servers providing them, as close
to mobile users as possible. Servers will not be localized
in remote datacenters, but at different entities within the

• F. Malandrino, C. F. Chiasserini, G. Avino and M. Malinverno are with
Politecnico di Torino, Italy. C. F. Chiasserini is also with CNIT and a
research associate with CNR-IEIIT, Torino, Italy. S. Kirkpatrick is with
the Hebrew University of Jerusalem, Israel.

This work is supported by the European Commission through the H2020
projects 5G-TRANSFORMER (Project ID 761536) and 5G-EVE (Project ID
815074).

mobile core network itself, from core switches to base sta-
tions [2], [3]. Similarly to cloud scenarios, there is a measure
of cooperation between content providers and network op-
erators. The servers deployed by the network operators will
run services developed by the content providers, usually
coming as a set of virtual network functions (VNFs) running
on virtual machines or containers.

Designing a MEC network requires making decisions on
where, within the network edge, servers shall be placed,
and how to dimension them. Both questions require a deep
knowledge of the data demand the network will have to
serve: more exactly, we need to know (i) how much data
the users will require; (ii) the type of such data, e.g., the
mobile apps requesting it, and (iii) how much computa-
tional power will be needed to produce these data. The
first two items have been widely studied: using operator-
provided [4], [5] and crowd-sourced [2], [3] traces, it is
possible for researchers to obtain a fairly good picture of
the data demand of mobile networks, including its time and
space evolution, as well as the services contributing to it.

Estimating the processing power needed to serve a given
network demand, on the other hand, is much more chal-
lenging. The processing required to generate one gigabit
per second of video data is not the same as the processing
needed for the same quantity of gaming updates or maps.
Additionally, it makes a significant difference whether the
data is consumed by a small number of users enjoying
a high bandwidth, or through a larger number of lower-
rate connections. None of the currently available real-world
traces contain all the information needed to distinguish
these cases.

We fill this gap by developing and demonstrating a
methodology to enrich existing demand traces with compu-
tational power information, translating (so to say) megabits
of downloaded data into CPU ticks consumed at the servers.
Specifically, in this paper we (i) consider a large-scale,
crowd-sourced cellular demand trace, already used in big
data applications [6]; (ii) perform an extensive set of exper-
iments, linking the quantity of downloaded data in differ-
ent conditions (type of service, number of users,...) to the
amount of CPU power required at the servers; (iii) assess
the impact of enriching our traces on the resulting planning
of the MEC network. Importantly, we make publicly available
realistic user demand traces, as well as our experimental
dataset linking user demand to computational burden [7].

2

We stress that, although MEC was our original motiva-
tion and we use it as a test case, the problem we address is
more fundamental and consistent with the high-level goal of
big data research, that is, to turn data into information. In our
case, data come from real-world measurements, and the in-
formation we seek has to do with next-generation networks
based on MEC. In spite of all their (perceived) abundance
and the (apparent) easiness with which they are processed,
real-world measurements can only deal with present-day
systems and, thus, they are not naturally well-suited to
study future ones. In this paper, we demonstrate how this
limitation can be overcome with the help of additional data,
real-world experiments, and domain knowledge.

The remainder of the paper is organized as follows. We
begin by reviewing related work in Sec. 2. Then we present
the real-world demand traces we use as a starting point in
Sec. 3, and describe the experiments we perform to enrich
them in Sec. 4. Sec. 5 introduces and discusses our MEC
network design strategy. After presenting our numerical
results in Sec. 6, we conclude the paper in Sec. 7.

2 RELATED WORK

Our study is connected to three main categories of prior
work: papers presenting real-world mobile traces and
datasets; studies addressing MEC in general and MEC-
based 5G networks specifically; works doing the latter using
the first.

Many real-world traces come from volunteers, such as
the MIT Reality Project [8] and the Nokia Mobile Challenge.
These traces include a great deal of valuable information;
their main shortcoming is the limited number of participants
(in the case of the Nokia Mobile Challenge, around two
hundred). This scale is adequate to study, for example, user
mobility or encounter patterns, but studying a whole cellu-
lar network requires information about many more users.
Mobile operators are typically reluctant to release demand
and deployment information to the scientific community.
An exception is represented by the Data For Development
dataset by Orange [4], including mobility information for
50,000 users in Ivory Coast, as well as CDR (call-detail
record) information for phone calls and SMS messages.
However, the Orange trace only includes voice calls and
SMS, and is severely restricted by heavy anonymization –
each ID encountered gets a new coded identity for each “ego
site” to which they are a neighbor. In other cases [5], mobile
operators have released demand or deployment information
to individual research teams under non-disclosure agree-
ments; however, these traces typically include only one
operator and/or only one city.

MEC has been recently introduced [9] as a way to move
“the cloud”, i.e., the servers processing mobile traffic, closer
to the end users, thus reducing latency and traffic load
across the network infrastructure. Network Function Virtu-
alization (NFV) is widely regarded to as an enabling tech-
nology for MEC (see, e.g., [9]). Recent works have studied
the radio techniques needed to enable MEC [10], its relation-
ship to the Internet-of-things [11] and context-aware, next-
generation networks [12]. Closer to our scenario, the authors
of [13] study how caches and servers should be placed in the
network as its load changes over time. Regarding MEC and

TABLE 1
The WeFi datasets

Atlanta Los Angeles San
Francisco

Time of collection Oct. 2015 Oct. 2015 Mar. 2015
Covered area [km2] 55× 66 46× 73 14 × 11
Total traffic [TB] 9.34 35.61 9.18

Number of records 13 million 81 million 60 million
Unique users 9,203 64,386 14,018
Unique cells 12,615 36,09 14,728

caching, a prominent application is mobile video streaming.
As an example, [14], [15] account for layered video coding
techniques, and address the problem of placing the right
layers at the right cache – with [14] also accounting for
cooperation between operators. Other works [16], [17] aim
at foreseeing the content demand, in order to proactively
populate caches or serve users.

5G will significantly exploit the MEC paradigm, and a
substantial body of research is devoted to the problem of
placing VNFs across the network providers’ servers. As an
example,[18], [19], [20], [21], [22] tackle the problems of VNF
placement and routing from a network-centric viewpoint,
i.e., they aim at minimizing the load of network resources.
In particular, [18] seeks to balance the load on links and
servers, while [19] studies how to optimize routing to min-
imize network utilization. The above approaches formulate
mixed-integer linear programming (MILP) problems and
propose heuristic strategies to solve them. [20], [21] and [22]
formulate ILP problems, respectively aiming at minimizing
the cost of used links and network nodes, minimizing
resource utilization subject to QoS requirements, and mini-
mizing bitrate variations through the VNF graph.

Not many works however exist that combine real-world
traces and multi-access edge computing. Among the most
recent ones, [2] studies the price (in terms of additional
infrastructure) of deploying caches within the cellular core
network. Compared to our work, [2] only focuses on caching
and vehicular traffic, and it only considers the dataset for the
city of Los Angeles.

Our earlier work [3] sets in the same scenario as this
paper: the traces introduced in Sec. 3 were used to study the
trade-offs between network latency and server utilization in
MEC network design. The results presented in [3] use the
quantity of data downloaded by users as a proxy metric for
computational capabilities required at the servers, and their
limited applicability represents one of the main motivations
behind this paper.

3 INPUT DATA

WeFi, now acquired by TruConnect Technologies, is an An-
droid application providing location-specific information on
the speed, security, and reliability of nearby Wi-Fi networks.
At the same time, it collected data on the activity of its users,
including location, mobile phone activity, and available
connectivity options. For our study we use three datasets,
coming from the U.S. cities of Atlanta, Los Angeles, and
San Francisco, characterized by the features summarized in
Tab. 1.

Datasets are organized in records, each containing: time
and GPS location; anonymized user identifier; current oper-
ator and cell identifier; active application on the smartphone

3

and amount of data it downloads. New records are gener-
ated every time any of the above changes (e.g., the user
moves or switches apps), or a one-hour period elapses.

The WeFi datasets represent a real-world, live snapshot
of both mobile networks and their users, and have three
features that make them especially relevant to our study.
First, they contain information on several cities, different for
traffic demand profile and network deployment. Further-
more, they include multiple mobile operators, with different
deployment strategies, e.g., usage of micro- and macro-cells.
Finally, they allow us to know the individual application
generating each traffic flow.

The WeFi data has been already used in the field of
big data, e.g., in the preliminary analysis [6] and follow-
up works. The purpose therein was to identify patterns of
living, commuting, fast food consumption, work activities
and recreation for tens of thousands of people. That case
study confirms that the content and quality of the WeFi
datasets are sufficient not only for networking studies, but
also for social observations and government actions.

Dataset available.While we cannot share the dataset we
use, we produced a synthetic trace with the same time and
space characteristic of its original counterpart, available for
download from [7]. For more details on the generation of
such synthetic traces, the interested reader is referred to [23].

4 ENRICHING THE MOBILE DATA TRACES

As mentioned in Sec. 1, our high-level goal is to use the de-
mand information available in the datasets to understand the
deployment we need, i.e., how much computational capacity
shall be placed within the network, and where. To this end,
we perform three main steps:

1) we design and perform a set of experiments measur-
ing the computational load associated with different
types of traffic, as detailed in Sec. 4.1;

2) we use the experimental data to train a model con-
necting the two quantities, as described in Sec. 4.2;

3) we exploit the model to estimate the computational
capacity needed to serve the traffic we observe in
our dataset, as discussed in Sec. 4.3.

4.1 Experimental setup

We focus on three different, highly representative types of
traffic, namely, video streaming, gaming, and maps. For re-
producibility purposes, we restrict ourselves to open-source
programs, namely:

• for video, the FFserver server and the VLC client;
• for gaming, the Minecraft server and the correspond-

ing Minecraft Pocket mobile client;
• for maps, the OpenMapTiles server [24], based on

data from OpenStreetMap [25].

For our experiments, we use a testbed, composed of
two computers – a client and a server – connected via a
Wi-Fi link. Both the client and the server are commodity,
off-the-shelf computers equipped with Intel Core i7-7700T
processors and running Ubuntu Linux 16.10. On the client
machine, we run the Genymotion Android emulator, which
in turn emulates a varying number of mobile clients. The

server machine hosts one instance of the server application,
containerized within Docker.

In streaming tests, we use three videos with different
duration, resolution, and file size; for gaming, we employ
three different moving patterns throughout the Minecraft
world; for maps, we generate requests for randomly-chosen
20 × 20 km2-areas. In both cases, we vary the number of
clients between 1 and 8, and use the FRep program to
drive the emulator, thus guaranteeing uniform, reproducible
patterns of UI actions, e.g., taps and swipes.

In all experiments, we measure two quantities: the
amount of data generated by the server program, and the
computational capacity it consumes. The former simply cor-
responds to the traffic outgoing from the docker0 virtual
interface created by Docker; the latter is obtained by polling
the /proc/<PID>/stat file relating to the server process.
The FFserver and Minecraft servers are single-threaded, so
there is only one process to account for. The OpenMapTiles
server, on the other hand, includes several processes, includ-
ing a database and a web server; in that case, we present the
aggregate CPU consumption figures.

4.2 Results and model

Fig. 1(a), Fig. 1(b) and Fig. 1(c) summarize our experimental
results. Each blue dot therein corresponds to an experiment,
e.g., a different combination of video file and number of
clients; its position in the plot is determined by how much
data was served in that experiment, and the corresponding
load on the server. Computational load values are expressed
in CPU ticks, the minimum unit of CPU scheduling in the
operating system. In Linux, each tick represents 10 ms; as an
example, saying that a process takes 200 ticks to complete
means that the CPU was assigned to that process for 2 s 1.

The first thing to notice is the scale of the two plots.
As one might expect, serving video implies transferring
massively more data than hosting a game server, and there-
fore video is rightfully regarded as one of the applications
consuming most of the bandwidth offered by networks.
Looking at the y-axis, on the other hand, a different aspect
emerges: the amount of CPU resources associated with gam-
ing and, to a lesser extent, maps, dwarfs the one required by
video.

This disproportion makes intuitive sense: while stream-
ing a video requires little more than reading a file from disk
and feeding it into a network stream, game and map servers
have to perform complex operations such as keeping track
of the game status or rendering the maps. However, its scale
is somehow unexpected, and serves as a clear reminder that
designing and deploying the computation part of a network,
i.e., where and how to place its computational power, using
only the traffic demand as a guideline is likely to result in
poor performance and low efficiency.

The vastly different relationships between served traffic
and CPU load are also evident from the linear fit we obtain

1. The real execution time might be longer, e.g., if the process is
preempted by a higher-priority one during its execution.

4

0 250 500 750 1000 1250

Data transfer [MByte]

0

50

100

150

200

250

300

350

C
P
U

 c
o
n
s
u
m

p
t
io

n
 [

t
ic

k
s
]

Fit (0.25 ticks/MBit)

Experimental data

(a)

0 1 2 3 4 5

Data transfer [MByte]

0

500

1000

1500

2000

2500

C
P
U

 c
o
n
s
u
m

p
t
io

n
 [

t
ic

k
s
]

Fit (161.38 ticks/MBit)

Experimental data

(b)

5 10 15 20

Data transfer [MByte]

200

400

600

800

1000

1200

C
P
U

 c
o
n
s
u
m

p
t
io

n
 [

t
ic

k
s
] Fit (65.67 ticks/MByte)

Experimental data

(c)

Fig. 1. Data (blue dots) and linear fit (red line) for the video (a), gaming (b) and maps (c) applications. Fitting error (RMSE) are 4%, 6% and 2%
respectively.

from the two sets of experiments, represented by red lines
in Fig. 1. The fitted relationships are as follows:

CPU[ticks] =

⎧

⎪

⎨

⎪

⎩

0.25× traffic[Mbit] + 6.76 for video,

161.38× traffic[Mbit] + 1675.03 for gaming,

67.44× traffic[Mbit] − 7.53 for maps.
(1)

Looking at Fig. 1, it also important to observe how the fit
is much better for maps traffic than for gaming: the root
mean square error (RMSE) for maps is 2% while it is equal
to 6% for gaming. The reason is that the quantity of CPU
required by gaming applications significantly depends on
such factors as the actions performed by the players – a fact
that leads to a larger variability.

The fact that all fitted relationships are linear is not es-
pecially relevant per se, nor particularly surprising; indeed,
it makes intuitive sense that the amount of work needed to
produce a certain type of data grows, more or less linearly,
with the quantity of data to produce. What matters the most
is the slope of the fitted lines, which changes by several
orders of magnitude from one traffic category to another.

In the following, we will indicate with τk the number
of CPU ticks needed to process one megabyte of traffic of
category k; for instance, τvideo = 0.25 CPU ticks/Mbyte
(i.e., the slope of the red line in Fig. 1(a)), τgaming =
161.38 ticks/Mbyte (i.e., the slope of the red line in Fig. 1(b)),
and τmaps = 67.44 ticks/Mbyte (i.e., the slope of the red line
in Fig. 1(c)).

4.3 Enriching the dataset

As a preliminary step, we need to decide, for each app we
observe in the dataset, whether its traffic can be considered
video-like, gaming-like, or map-like (or none of them). We
perform such an assignment as follows:

• traffic coming from YouTube, Netflix, TimeWarner,
ShowBox, Twitch, DirectTV, FoxSports, FoxNews, is
tagged as video-like;

• traffic coming from Minecraft, World of Warcraft,
Riptide, Grand Theft Auto, Rollercoaster Tycoon,
This War of Mine, Titan Quest, Unkilled, is tagged
as game-like;

• traffic coming from Google Maps andWaze is tagged
as map-like.

neither

maps

video
gaming

video

maps

gaming

Fig. 2. Categories traffic demand belongs to (left); amount of computa-
tional power required to serve video-, and gaming- and maps-like traffic
(right).

As summarized in Fig. 2(left), about 66% of the traffic we
observe in our dataset can be classified as video-like, about
15% of it as game-like, while the amount of map-like traffic
is much smaller. Much of the traffic that cannot be tagged
comes from social networking applications, whose behavior
cannot be easily studied due to the lack of open-source
social network servers.

Once the assignment is made, we can use the rela-
tionship in (1), learned in Sec. 4.2, to add a new column
to our dataset. The column, called cpu_ticks, expresses
how much computational power is required to generate
the traffic reported in each line of the dataset. Notice that
relationships other than linear can be accounted for at no
additional complexity.

Fig. 2 further highlights the gap between the quan-
tity of traffic generated by different applications and the
corresponding CPU load. Gaming and maps represent a
small fraction of the total traffic (Fig. 2(left)); however, by
applying (1), we obtain the results shown in Fig. 2(right):
gaming applications consume the vast majority, over 90%,
of all computational resources. This further highlights the
importance of accounting for the computational load of
different types of traffic in network design.

4.4 Discussion

Our trace enrichment strategy has some limitations: it does
not account for all the traffic types, and might not perfectly
model the behavior of all servers.

The first issue is evident from Fig. 2(left): around 25% of
all traffic cannot be classified as either video-like, gaming-
like, or maps-like. On the other hand, our analysis is able
to account for over 70% of all present-day traffic, and video,

5

gaming and maps are the applications that are expected to
grow the most in the near future.

The second issue has to do with the fact that we model
the behavior of YouTube and Netflix using FFserver, of
World of Warcraft through Minecraft, or of Google Maps
using OpenStreetMap. On the one hand, this might sound a
bit bold. On the other hand, it is true that the problems faced
by different applications of the same type – and the solutions
thereto – tend to overlap. This explains, as an example, the
existence of gaming engines such as Unity or Microsoft XNA,
providing the developers of a heterogeneous set of games
with homogeneous solutions to a small set of common
problems.

In summary, our analysis provides valuable guidelines
highlighting the existence of a mismatch between the quan-
tity of traffic and the corresponding CPU load, as well as
its magnitude. Additionally, the methodology we employ is
general, and works unmodified in cases where additional
traffic types and/or applications are taken into account, or
if larger-scale experiments can be performed.

Dataset available. The results of our experiments are
available for download from [7].

5 MEC DESIGN

We now show how the enhanced dataset we created can be
used to devise a MEC design strategy. Our input data are
represented by:

• a set of base stations;
• the expected/predicted traffic at each of them and its

characteristics;
• the network connectivity.

Given the above, we have to dimension the network com-
putational capabilities, i.e., to decide (i) where to place the
MEC servers, and (ii) the capacity they should have.

We solve this problem accounting also for the specific
applications we deal with, thus developing an application-
aware deployment, accommodating the requirements of each
application. Indeed, such requirements can be substantially
different for different categories of applications. As an ex-
ample, we might be willing to serve such (comparatively)
delay-tolerant content as video-like and map-like traffic
through a server located in the core network, while real-time
services like mobile gaming will require their servers to be
much closer to the end users, possibly at individual base
stations. It is important to stress that, in pure NFV/MEC
fashion, we allow the same servers to serve multiple appli-
cations concurrently, provided that the server capacity is not
exceeded.

At last, note that our input data is represented by the
traffic that is actually served by the base stations. Consis-
tently with MEC design best practices [26], [27], we do not
need to explicitly account for access-network issues such as
congestion and interference. Indeed, the coverage quality
experienced by users influences the amount of data they are
able to upload/download, and this aspect is captured by
our system model and MEC design.

5.1 Network topology

The identity and positions of base stations b ∈ B, as well as
their demand δ(b, k, t) are readily available from the trace
we describe in Sec. 3. However, we have no information
about the topology of the backhaul cellular network. Indeed,
mobile operators are extremely reluctant to disclose this
information, and virtually all works in the literature resort
to synthetic topologies based on current best practices. Fol-
lowing [28], we assume a fat-tree topology, where:

• base stations are grouped into rings of ten;
• every ten rings, there is an aggregation-level pod;
• every ten pods, there is a core-level switch.

The topology has a fan-out of 2, i.e., we connect every ring
to the two closest pods, and every pod to the two closest
core switches, while switches themselves are connected in
a full mesh. The network topology we generate can be
represented as a graph G = (N , E).

We also generate a DAG D = (N ,F), to keep track of
which nodes can serve each base station. In particular, we
generate a (directed) edge (n1, n2) ∈ F between nodes such
that:

• n1 and n2 are connected, i.e., (n1, n2) ∈ E , and
• n1 belongs to a network level immediately higher to

the one of n2, e.g., n1 is a ring and n2 is a base station.

We will say that node n1 is a parent of n2 if (n1, n2) ∈ F .
Base stations have no children, i.e., they are leaves in the
DAG, while core switches have no parents, i.e., they are
roots.

Notation. We denote by n ∈ N all the nodes of the
cellular network, from base stations to core-level switches,
and by b ∈ B ⊂ N the base stations among them. The
physical distance between any two nodes n1 and n2 is
denoted by d(n1, n2). Contents are specific to category k ∈ K,
e.g., video, gaming, or maps, and time is discretized into
steps t ∈ T . We denote by δ(b, k, t) the demand from users
covered by base station b, for contents of category k and
during step t.

5.2 MEC design

Designing our MEC network means making two decisions,
each corresponding to a binary variable:

• whether we should place a server at node n ∈ N ,
expressed through variable y(n) ∈ {0, 1};

• whether the traffic coming from base station b ∈ B
shall be served by the server placed at node n ∈ N ,
expressed through variable x(b, n) ∈ {0, 1}.

Note that none of the decision variables depends on the
time step t ∈ T ; this reflects the fact that deployment
decisions are made periodically, with a time period much
longer than a single time step, accounting for the evolution
of data demand over the previous period. Needless to say,
we cannot serve anything on servers that do not exist, i.e., it
must be:

x(b, n) ≤ y(n), ∀b ∈ B, n ∈ N .

The objective of the problem can be stated as deploying
the smallest possible number of servers subject to delay
constraints, i.e.,

min
x,y

∑

n∈N

y(n).

6

Algorithm 1 Greedy MEC design

Require: k, Lmax, δ(b, k, t),B,N
1: for all b ∈ B do
2: if maxt∈T δ(b, k, t) > 0 then
3: y(b) ← 1
4: x(b, b) ← 1
5: end if
6: end for
7: while latency ≤ Lmax do
8: P ← {(n1, n2) ∈ N : y(n1) > 0 ∧ y(n2) > 0 ∧

(n1, n2) ∈ F}
9: P ← P ∪ {(n1, n2) ∈ N : y(n1) > 0 ∧ y(n2) > 0 ∧

∃n3 ∈ N : (n3, n1) ∈ F ∧ (n3, n2) ∈ F}
10: n⋆

1, n
⋆
2 ← argmaxP score(n1, n2)

11: consolidate(n⋆
1, n

⋆
2)

12: end while
13: return x(b, n), y(n)

Algorithm 2 The consolidation procedure

Require: n1, n2, k
1: if (n1, n2) ∈ F then ◃ parent-children, like Fig. 3(top)
2: for all b ∈ B : x(b, n2) > 0 do
3: x(b, n2) ← 0
4: x(b, n1) ← 1
5: end for
6: y(n2) ← 0
7: else ◃ siblings, like Fig. 3(bottom)
8: n3 ← n3 ∈ N : (n1, n3) ∈ F ∧ (n2, n3) ∈ F
9: for all b ∈ B : x(b, n1) > 0 do
10: x(b, n1) ← 0
11: x(b, n3) ← 1
12: end for
13: for all b ∈ B : x(b, n2) > 0 do
14: x(b, n2) ← 0
15: x(b, n3) ← 1
16: end for
17: y(n1) ← 0
18: y(n2) ← 0
19: y(n3) ← 1
20: end if

Optimally setting the binary x- and y-variables subject to
constraints on the need to serve all traffic requires solving
an ILP problem2, which is notoriously [29] impractical even
for modestly-sized problem instances. We therefore devise
a greedy design procedure, able to efficiently make good-
quality deployment decisions.

5.2.1 Greedy design procedure

Our greedy design procedure is inspired to hierarchical clus-
tering and summarized in Alg. 1. It takes as input (Line 0)
the content category k to consider, its maximum processing
latency Lmax, its demand over time δ(b, k, t), and the sets B
and N of, respectively, base stations and network nodes.
This implies that Alg. 1 makes per-category decisions, and
is thus able to account for the fact that different categories
of content, with different latency limits Lmax, might require

2. We skip the proof, based on a reduction from the SAT problem, in
the interest of space.

Fig. 3. The consolidation procedure. Circles represent nodes in n ∈ N ;
black ones correspond to nodes that host a server, i.e., y(n) = 1, white
ones to nodes that do not, i.e., y(n) = 0. If n1 is n2’s parent (top), the
server at n2 is removed and all base stations it served, are served by
n2’s parent n1. If n1 and n2 are siblings (bottom), the servers at n1

and n2 are removed, and a new one is created at their parent n3.

different deployment strategies. Notice that with latency we
indicate the time spent within the core network, which is
itself a component of the total, end-to-end service time.

The algorithm starts (Line 1) from a solution where each
base station that ever serves at least one user requiring
content category k (i.e., maxt∈T δ(b, k, t) > 0) has its own
server, i.e., y(b) = 1. Then, as long as the latency resulting
from our deployment does not exceed the threshold Lmax

(Line 7), we select a pair of nodes (n1, n2) to consolidate
together, reducing the number of servers at the price of
potentially increasing the service latency.

The consolidation procedure is depicted in Fig. 3. It
involves two nodes n1 and n2 such that either n2 is n1’s
parent, or n1 and n2 are siblings, i.e., have a common
parent n3. In both cases, the server(s) at the child(ren) are
removed, and all base stations they used to serve are served
by the parent. Every time we perform the consolidation
procedure, the number of servers deployed in the topology
decreases by one unit, at the cost of potentially increasing
the latency.

In Line 8–Line 9 of Alg. 1, we construct a set P of pairs of
nodes eligible for consolidation, i.e., such that (i) they both
have a server, and either (ii) n1 is n2’s parent (Line 8), or
(iii) both n1 and n2 have a common parent n3. In Line 10,
we select the nodes n⋆

1 and n⋆
2 with the highest score, i.e.,

the most suitable to consolidate, and call the consolidate
procedure with those nodes as an argument. As discussed
in Sec. 5.2.2, different definitions of score can be considered,
leading to different deployment strategies.

Alg. 2 details the consolidation procedure, and takes as
input the nodes n1 and n2 to consolidate. If n2 is n1’s parent,
i.e., we are in the situation of Fig. 3(top), the server at n2 is
removed and any base stations that were served by n2 are
served by n1 (Line 1–Line 6 of Alg. 2). If n1 and n2 are
siblings, i.e., we are in the situation of Fig. 3(bottom), then
we first identify the node n3 that is a parent to both n1

and n2 (Line 8). Afterwards, servers at both n1 and n2 are
removed, a new server at n3 is created, and all base stations
that were served by n1 or n2 are served by n3 (Line 7–
Line 19 of Alg. 2).

5.2.2 Score definitions

A key feature of our approach is that it can support multiple
deployment strategies through the one algorithm Alg. 1. We
are able to do so by considering multiple definitions of the
score associated with consolidating two network nodes, i.e.,

7

0 500 1000 1500 2000

Iteration

0

250

500

750

1000

1250

1500

N
u
m

b
e
r
 o

f
s
e
r
v
e
r
s

cell

ring

aggr.

core

0 500 1000 1500 2000

Iteration

0

20

40

60

80

100

120

140

T
r
a
ff

ic
 [

G
B

y
t
e
]

cell

ring

aggr.

core

Fig. 4. Location-based scores: number of servers (left) and amount of
traffic processed (right) at the different network levels, for each iteration
of Alg. 1.

the implementation of function score called in Line 10. Re-
call that we are still focusing on a single content category k.
Location-based It is often desirable to consolidate nodes
that are physically close to each other, as this typically
translates into a shorter travel time between the users and
the servers serving them. This corresponds to giving higher
scores to pairs of nodes that are close to each other, i.e.,

score(n1, n2) = −d(n1, n2). (2)

Load-based An alternative deployment strategy takes into
account the load of each server, and tries to avoid consoli-
dating nodes whose demands have a similar time evolution,
i.e., whose peak times tend to overlap. The rationale is that
by doing so we can decrease the capacity requirements for
the consolidated servers, which depend upon the peak of
the combined load. More formally, let us define a serve
vector s⃗(n) for each node n. s⃗(n) vectors have |T | elements,
and each element s(n)t represents the total demand for
contents of category k by users at base stations that are
served by node n during time step t:

s(n)t =
∑

b∈B

x(b, n)δ(b, k, t).

Given the s⃗(n) values, we can define the score related to the
(n1, n2) pair as

score(n1, n2) = max
t∈T

τks(n1)t +max
t∈T

τks(n2)t+

−max
t∈T

τk (s(n1)t + s(n2)t) . (3)

where the first two terms of the second member of (3) repre-
sent the peak loads of nodes n1 and n2 before consolidation;
the third term is the peak load of the combined server, after
consolidation. A high-scoring consolidation operation will
involve nodes with high peak loads (first two terms, with
positive sign) that can be combined into a new, low-load
server (third term, with negative sign).

Recall that the factor τk in (3) expresses how many units
of computational power (e.g., CPU ticks) are needed to gen-
erate one unit of traffic (e.g., one megabyte) of category k, as
obtained in Sec. 4.3. Using non-enriched traces corresponds
to assuming τk = 1, ∀k ∈ K.

5.2.3 Multiple categories

As mentioned in Sec. 5.2.1, both Alg. 1 and Alg. 2 make
decisions on a per-category basis, and are therefore able to
reproduce the fact that different applications can require

0 500 1000 1500

Iteration

0

250

500

750

1000

1250

1500

N
u
m

b
e
r
 o

f
s
e
r
v
e
r
s

cell

ring

aggr.

core

0 500 1000 1500

Iteration

0

20

40

60

80

100

120

140

T
r
a
ff

ic
 [

G
B

y
t
e
]

cell

ring

aggr.

core

Fig. 5. Load-based scores: number of servers (left) and amount of traffic
processed (right) at the different network levels, for each iteration of
Alg. 1.

different deployments. In the following, we consider the
presence of different application categories and describe
how our approach can be easily leveraged to realize an
application-aware deployment. We proceed as follows:

• we divide application into categories;
• we run our greedy deployment procedure separately

for each category;
• we combine the resulting deployments.

Running Alg. 1 separately for different categories also
means evaluating Line 7 therein using the maximum latency
values Lmax of each category. Similarly, the demand-aware
distance (3) is computed separately for each category, only
accounting for the contents falling in the current category.

6 NUMERICAL RESULTS

In this section, we investigate how deployment strate-
gies and score definitions (Sec. 6.1), using enriched traces
(Sec. 6.2) and considering per-category latency limits
(Sec. 6.3), impact the resulting MEC deployment and its
effectiveness. For sake of brevity, we only present results
for one of the three operators included in our trace. High-
resolution versions of the plots for all operators, as well as
the Matplotlib source code to generate them, are available
from [7].

6.1 Effect of the deployment strategy

The first aspect we are interested in is the impact of the
score definition we adopt, i.e., whether we use (2) or (3) to
implement the score function in Alg. 1. To this end, we
first assume no latency limit, i.e., Lmax = ∞, and study (i)
how much traffic is processed at each level of the network
– base station (BS), ring, aggregation, core – and (ii) how
many servers are deployed therein.

Fig. 4 and Fig. 5 demonstrate how Alg. 1 and the con-
solidation procedure work in the case of location-based and
load-based scores, respectively. We start at iteration 0 with
one server at each BS; then, at each iteration, we reduce
the total number of servers through consolidation, replacing
BS servers with servers placed at the higher levels of the
network topology. We can observe that, while Fig. 4(left)
shows a significant number of servers at ring and aggre-
gation nodes, Fig. 5(right) shows a tendency to process
traffic either at BSs, or at very few, core-level servers. This
is confirmed by Fig. 4(right) and Fig. 5(right): with location-
based scores, servers are lazilymoved from BSs to rings, and

8

0 500 1000 1500 2000

Iteration

0

2

4

6

8

10

12

A
v
e
r
a
g
e
 d

e
la

y
 [

m
s
]

Original

Enriched

Loc.-based

Load-based

(a)

0 500 1000 1500 2000

Iteration

0.0

0.1

0.2

0.3

0.4

0.5

E
ff

ic
ie

n
c
y

Original

Enriched

Loc.-based

Load-based

(b)

0 2 4 6 8 10 12

Average delay [ms]

0.0

0.1

0.2

0.3

0.4

E
ff

ic
ie

n
c
y

Loc.-based/original

Loc.-based/enriched

Load-based/original

Load-based/enriched

(c)

Fig. 6. Latency (a) and efficiency (b) for each iteration of Alg. 1 for different deployment strategies when the original (solid lines) and enriched
(dotted lines) trace is used; resulting latency/efficiency trade-offs (c).

0 250 500 750 1000 1250 1500

Iteration

0

2

4

6

8

10

12

A
v
e
r
a
g
e
 d

e
la

y
 [

m
s
]

Original

Enriched

gaming

other

(a)

0 250 500 750 1000 1250 1500

Iteration

0

20

40

60

80

100

120

140
T
r
a
ff

ic
 [

G
B

y
t
e
]

cell

ring

aggr.

core

gaming

other

(b)

0 500 1000 1500 2000

Iteration

0.0

0.1

0.2

0.3

0.4

0.5

E
ff

ic
ie

n
c
y

Original

Enriched

Loc.-based

Load-based

(c)

Fig. 7. Finite latency limit for gaming content: latency for each type of content with load-based scores (a); where different types of content are
processed in case of load-based scores (b); resulting efficiency (c).

then further up, only when required. On the other hand,
using load-based scores we aggressively process as much
data as possible as high in the topology as possible, so as to
smoothen the peaks.

6.2 Efficiency and latency: the importance of ticks

As we have seen, different deployment strategies (i.e., dif-
ferent scores) result in deeply different network planning
decisions. In the following, we study (i) how such decisions
impact the latency and efficiency of the resulting network,
and (ii) if enriching the trace as discussed in Sec. 4 impacts
either metric.

We estimate the latency using [30] as a reference: the
connection between users (UEs in LTE terminology) and
base stations (eNBs) requires 5 ms, while additional hops
within the backhaul network (e.g., from BSs to rings) require
about 2.3 ms each.

As for efficiency, we define it as the ratio between the av-
erage capacity that is actually required to process the traffic
and the total capacity deployed throughout the network:

η =
1

|T |

∑

t∈T

∑

n∈N

∑

k∈K τks(n)kt
∑

n∈N maxt∈T
∑

k∈K τks(n)kt
. (4)

A network where all servers are always fully utilized would
have an efficiency of 1, while a network where servers are
almost never used would have almost-zero efficiency. Also
notice that in (4) we consider all content categories, and
abuse the notation to indicate with s(n)kt the amount of data
of content of category k that node n must process at time t.

Fig. 6(a) shows that location-based scores are associated
with a lower latency than load-based ones. On the other
hand, as shown in Fig. 6(b), load-based scores maximize

the network efficiency – which, however, hardly exceeds
30%, due to time fluctuations of the demand. It is inter-
esting to compare the solid and dashed lines in Fig. 6(a)
and Fig. 6(b), respectively obtained with the original trace
and the enriched trace. Using the enriched trace, i.e., ticks
instead of megabytes, provides both a lower latency and a
higher efficiency. This is confirmed by Fig. 6(c), depicting
the latency/efficiency trade-offs that can be obtained using
different scores and traces.

The difference between location- and load-based per-
formance in Fig. 6(a)–Fig. 6(c) can be interpreted as the
benefit obtained by using the enriched trace in lieu of the
original one. By doing so, we can make better deployment
decisions, which consistently result in better efficiency and
lower latency.

6.3 The effect of latency limits

We now consider finite latency limits; specifically, we
set Lmax = 50 ms for video and maps and, based on [31],
Lmax = 10 ms for gaming traffic. Fig. 7(a), obtained
with load-based scores, shows that different content cat-
egories now experience different latencies. In particular,
gaming data are always served within its maximum latency
limit Lmax = 10 ms, while other content is served with
a higher latency – but still lower than its maximum limit.
This is due to the different locations within the network
where content is processed, as shown in Fig. 7(b). In the late
iterations of the algorithm, we can observe that almost all
gaming content (represented by patterned areas) is served
at aggregation nodes, while almost all non-gaming content
(solid areas) is served at core nodes. Indeed, based on [30],
going from UEs to core nodes entails a latency of 12 ms,
which is not compatible with the latency limit for gaming.

9

Furthermore, it is important to note that, even if latency
requirements for video and maps would permit the deploy-
ment of their servers in the cloud, MEC is still an appealing
solution as it avoids transferring large amounts of data over
long distances, thus reducing bandwidth consumption.

Being unable to serve gaming content at core servers
also has the potential to impair network efficiency; indeed,
as it can be seen from Fig. 6(b) and Fig. 6(c), the highest
efficiency is reached when most content is processed there.
By comparing Fig. 7(c) to Fig. 6(b), we can indeed observe a
decrease in the efficiency; however, such a decrease is lower
than 10%, which confirms that MEC is able to deliver both
low latency and high efficiency.

Finally, it is interesting to observe that the advantage of
using enriched traces in lieu of the original is clearly visible,
in terms of both latency and efficiency.

7 CONCLUSION AND FUTURE WORK

One of the challenges we face in the design of next-
generation networks is using real-world data about present-
day technologies to predict their performance. In this work,
we took cellular networks as a case study, and demonstrated
how a real-world, large-scale dataset about data demand in
LTE can be leveraged to design a next-generation, MEC-
based network.

To this end, we enriched the dataset at our disposal,
integrating it with information about the processing power
needed to generate traffic of the two main categories of con-
tent. We obtained such information through a set of hands-
on experiments, based on the Minecraft and FFserver open-
source servers. Our results show that using the enriched
trace instead of the original one results in better network
design, allowing both lower latency and higher network
efficiency.

REFERENCES

[1] K. Zheng, T. Taleb, A. Ksentini, C. L. I, T. Magedanz, and
M. Ulema, “Research and standards: advanced cloud and virtu-
alization techniques for 5g networks (part ii) [guest editorial],”
IEEE Communications Magazine, 2015.

[2] F. Malandrino, C. Chiasserini, and S. Kirkpatrick, “The price of
fog: A data-driven study on caching architectures in vehicular
networks,” in ACM MobiHoc IoV-VoI Workshop, 2016.

[3] ——, “How close to the edge? Delay/utilization trends in MEC,”
in ACM CoNEXT CAN Workshop, 2016.

[4] V. D. Blondel, M. Esch, C. Chan, F. Clérot, P. Deville, E. Huens,
F. Morlot, Z. Smoreda, and C. Ziemlicki, “Data for development:
the d4d challenge on mobile phone data,” arXiv preprint, 2012.

[5] P. D. Francesco, F. Malandrino, T. K. Forde, and L. A. DaSilva, “A
sharing- and competition-aware framework for cellular network
evolution planning,” IEEE Trans. on Cogn. Comm. and Netw., 2015.

[6] S. Kirkpatrick, A. Zmirli, R. Bekkerman, and F. Malandrino, “Min-
ing the Thin Air – for Research in Public Health,” ArXiv preprint
1806.07918, 2018.

[7] Additional material. https://dl.dropbox.com/s/
5uszesbrogp3zch/material.html.

[8] N. Eagle and A. Pentland, “Reality mining: sensing complex social
systems,” Personal and ubiquitous computing, 2006.

[9] ETSI. Mobile edge computing white ppaer. http://www.etsi.org/
technologies-clusters/technologies/mobile-edge-computing.

[10] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization
of radio and computational resources for multicell mobile-edge
computing,” IEEE Transactions on Signal and Information Processing
over Networks, 2015.

[11] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the internet of things,” in Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud Computing, 2012.

[12] S. Nunna, A. Kousaridas, M. Ibrahim, M. Dillinger, C. Thuemmler,
H. Feussner, and A. Schneider, “Enabling real-time context-aware
collaboration through 5g and mobile edge computing,” in ITNG,
2015.

[13] F. Sardis, G. Mapp, J. Loo, and M. Aiash, “Dynamic edge-caching
for mobile users: Minimising inter-as traffic by moving cloud
services and vms,” in IEEE WAINA, 2014.

[14] K. Poularakis, G. Iosifidis, A. Argyriou, I. Koutsopoulos, and
L. Tassiulas, “Caching and operator cooperation policies for lay-
ered video content delivery,” in IEEE INFOCOM, 2016.

[15] X. Cai, S. Zhang, and Y. Zhang, “Economic analysis of cache
location in mobile network,” in IEEE WCNC, 2013.

[16] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The
role of proactive caching in 5G wireless networks,” IEEE Comm.
Mag., 2014.

[17] M. Ahsan, C. Casetti, C. Chiasserini, P. Giaccone, and J. Haerri,
“Mobility-aware edge caching for connected cars,” in IEEE/IFIP
WONS, 2016.

[18] A. Hirwe and K. Kataoka, “LightChain: A lightweight optimiza-
tion of VNF placement for service chaining in NFV,” in IEEE
NetSoft, 2016.

[19] T. W. Kuo, B. H. Liou, K. C. J. Lin, and M. J. Tsai, “Deploying
chains of virtual network functions: On the relation between link
and server usage,” in IEEE INFOCOM, 2016.

[20] A. Baumgartner, V. S. Reddy, and T. Bauschert, “Mobile core net-
work virtualization: A model for combined virtual core network
function placement and topology optimization,” in IEEE NetSoft,
2015.

[21] F. Ben Jemaa, G. Pujolle, and M. Pariente, “Analytical Models for
QoS-driven VNF Placement and Provisioning in Wireless Carrier
Cloud,” in ACM MSWiM, 2016.

[22] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in IEEE CloudNet,
2015.

[23] F. Malandrino, C. F. Chiasserini, and S. Kirkpatrick, “Cellular
Network Traces Towards 5G: Usage, Analysis and Generation,”
IEEE Transactions on Mobile Computing, 2017.

[24] OpenMapTiles Map Server. https://www.openstreetmap.com.
[25] OpenStreetMap. https://www.openstreetmap.com.
[26] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,

“On multi-access edge computing: A survey of the emerging 5g
network edge cloud architecture and orchestration,” IEEE Com-
munications Surveys & Tutorials, 2017.

[27] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user compu-
tation offloading for mobile-edge cloud computing,” IEEE/ACM
Transactions on Networking, 2016.

[28] X. Jin, L. E. Li, L. Vanbever, and J. Rexford, “Softcell: Scalable
and flexible cellular core network architecture,” in ACM CoNEXT,
2013.

[29] P. E. Gill, W. Murray, and M. H. Wright, Practical optimization.
Academic Press, 1981.

[30] M. Brand and J. Pomy, “One-way Delays in Operating LTE Net-
works,” in ITU Workshop on Monitoring and Benchmarking of QoS
and QoE of Multimedia Services in Mobile Networks, 2014.

[31] C. Westphal, “Challenges in Networking to Support Augmented
Reality and Virtual Reality,” in IETF98-ICNRG Meeting, 2017.

	Página en blanco

