107 research outputs found

    water exchange in bacterial photosynthetic reaction centers embedded in a trehalose glass studied using multiresonance EPR

    Get PDF
    Using isotope labeled water (D2O and H217O) and pulsed W-band (94 GHz) high- field multiresonance EPR spectroscopies, such as ELDOR-detected NMR and ENDOR, the biologically important question of detection and quantification of local water in proteins is addressed. A bacterial reaction center (bRC) from Rhodobacter sphaeroides R26 embedded into a trehalose glass matrix is used as a model system. The bRC hosts the two native radical cofactor ions Image ID:c7cp03942e-t1.gif (primary electron donor) and Image ID:c7cp03942e-t2.gif (primary electron acceptor) as well as an artificial nitroxide spin label site-specifically attached to the surface of the H-protein domain. The three paramagnetic reporter groups have distinctly different local environments. They serve as local probes to detect water molecules via magnetic interactions (electron–nuclear hyperfine and quadrupole) with either deuterons or 17O nuclei. bRCs were equilibrated in an atmosphere of different relative humidities allowing us to control precisely the hydration levels of the protein. We show that by using oxygen-17 labeled water quantitative conclusions can be made in contrast to using D2O which suffers from proton–deuterium exchange processes in the protein. From the experiments we also conclude that dry trehalose operates as an anhydrobiotic protein stabilizer in line with the “anchorage hypothesis” of bio-protection. It predicts selective changes in the first solvation shell of the protein upon trehalose–matrix dehydration with subsequent changes in the hydrogen-bonding network. Changes in hydrogen-bonding patterns usually have an impact on the global function of a biological system

    Nano-Electrochemical Characterization of a 3D Bioprinted Cervical Tumor Model

    Get PDF
    Current cancer research is limited by the availability of reliable in vivo and in vitro models that are able to reproduce the fundamental hallmarks of cancer. Animal experimentation is of paramount importance in the progress of research, but it is becoming more evident that it has several limitations due to the numerous differences between animal tissues and real, in vivo human tissues. 3D bioprinting techniques have become an attractive tool for many basic and applied research fields. Concerning cancer, this technology has enabled the development of three-dimensional in vitro tumor models that recreate the characteristics of real tissues and look extremely promising for studying cancer cell biology. As 3D bioprinting is a relatively recently developed technique, there is still a lack of characterization of the chemical cellular microenvironment of 3D bioprinted constructs. In this work, we fabricated a cervical tumor model obtained by 3D bioprinting of HeLa cells in an alginate-based matrix. Characterization of the spheroid population obtained as a function of culturing time was performed by phase-contrast and confocal fluorescence microscopies. Scanning electrochemical microscopy and platinum nanoelectrodes were employed to characterize oxygen concentrations - a fundamental characteristic of the cellular microenvironment - with a high spatial resolution within the 3D bioprinted cervical tumor model; we also demonstrated that the diffusion of a molecular model of drugs in the 3D bioprinted construct, in which the spheroids were embedded, could be measured quantitatively over time using scanning electrochemical microscop

    Trapping at the Solid−Gas Interface: Selective Adsorption of Naphthalene by Montmorillonite Intercalated with a Fe(III)− Phenanthroline Complex

    Get PDF
    In this study, stable hybrid materials (Mt−Fe(III)Phen), made by the μ-oxo Fe(III)−phenanthroline complex [(OH2)3(Phen)- FeOFe(Phen)(OH2)3]4+ (Fe(III)Phen) intercalated in different amounts into montmorillonite (Mt), were used as a trap for immobilizing gaseous benzene and naphthalene and their mono chloro-derivatives at 25 and 50 °C. The entrapping process was studied through elemental analysis, magic angle spinning NMR spectroscopy, thermal analysis, and evolved gas mass spectrometry. Naphthalene and 1-chloronaphthalene were found to be immobilized in large amount at both temperatures. Molecular modeling allowed designing of the structure of the interlayer in the presence of the immobilized aromatic molecules. Adsorption is affected by the amount of the Fe complex hosted in the interlayer of the entrapping hybrid materials. On the contrary, under the same conditions, benzene and chlorobenzene were not adsorbed. Thermal desorption of naphthalenes was obtained under mild conditions, and immobilization was found to be reversible at least for 20 adsorption/desorption cyclesThe authors are thankful to the University of Modena and Reggio Emilia for FAR 2016 funding program (PAsTIME Project, grant number: FAR2016DIPBORSARI), for the Visiting Professor program, and for the facilities provided by the Centro Interdipartimentale Grandi Strumenti, to MIUR for funding program FFABR 2017, to the Computational Centre of University of Granada and CINECA of Bologna for the high-performance computing service, and to the Andalusian project RMN1897 and the Spanish projects FIS2013-48444- C2-2-P and FIS2016-77692-C2-2-P for financial support

    Interlayer potassium and its neighboring atoms in micas : Crystal-chemical modeling and XANES spectroscopy

    Get PDF
    A detailed description of the interlayer site in trioctahedral true micas is presented based on a statistical appraisal of crystal-chemical, structural, and spectroscopic data determined on two sets of trioctahedral micas extensively studied by both X-ray diffraction refinement on single crystals (SC-XRD) and X-ray absorption fine spectroscopy (XAFS) at the potassium K -edge. Spectroscopy was carried out on both random powders and oriented cleavage flakes, the latter setting taking advantage of the polarized character of synchrotron radiation. Such an approach (AXANES) is shown to be complementary to crystal-chemical investigation based on SC-XRD refinement. However, the results are not definitive as they focus on few samples having extreme features only (e.g., end-members, unusual compositions, and samples with extreme and well-identified substitution mechanisms). The experimental absorption K -edge (XANES) for potassium was decomposed by calculation and extrapolated into a full in-plane absorption component (σ||) and a full out-of-plane absorption component (σ⊥). These two patterns reflect different structural features: σ|| represents the arrangement of the atoms located in the mica interlayer space and facing tetrahedral sheets; σ⊥ is associated with multiple-scattering interactions entering deep into the mica structure, thus also reflecting interactions with the heavy atoms (essentially Fe) located in the octahedral sheet. The out-of-plane patterns also provide insights into the electronic properties of the octahedral cations, such as their oxidation states (e.g., Fe2+ and Fe3+) and their ordering (e.g., trans - vs. cis -setting). It is also possible to distinguish between F- and OH-rich micas due to peculiar absorption features originating from the F vs. OH occupancy of the O4 octahedral site. Thus, combining crystal-chemical, structural, and spectroscopic information is shown to be a practical method that allows, on one hand, assignment of the observed spectroscopic features to precise structural pathways followed by the photoelectron within the mica structure and, on the other hand, clarification of the amount of electronic interactions and forces acting onto the individual atoms at the various structural sites

    Interlayer-Confined Cu(II) Complex as an Efficient and Long-Lasting Catalyst for Oxidation of H2S on Montmorillonite

    Get PDF
    Removal of highly toxic H2S for pollution control and operational safety is a pressing need. For this purpose, a montmorillonite intercalated with Cu(II)-phenanthroline complex [Cu[(Phen)(H2O)2]2+ (Mt-CuPhen) was prepared to capture gaseous H2S under mild conditions. This hybrid material was simple to obtain and demonstrated an outstanding ability to entrap H2S at room temperature, retaining high efficiency for a very long time (up to 36.8 g of S/100 g Mt-CuPhen after 3 months of exposure). Sorbent and H2S uptake were investigated by elemental analysis, X-ray powder diffraction measurements, diffuse reflectance (DR) UV–Vis and infrared spectroscopy, thermal analysis and evolved gas mass spectrometry, scanning electron microscopy equipped with energy-dispersive X-ray spectrometer, and X-ray absorption spectroscopy. The H2S capture was studied over time and a mechanism of action was proposed. The entrapping involves a catalytic mechanism in which [Cu[(Phen)(H2O)2]2+ acts as catalyst for H2S oxidation to S0 by atmospheric oxygen. The low cost and the long-lasting performance for H2S removal render Mt-CuPhen an extremely appealing trap for H2S removal and a promising material for many technological applications

    Enhanced Uptake and Phototoxicity of C60@albumin Hybrids by Folate Bioconjugation

    Get PDF
    Fullerenes are considered excellent photosensitizers, being highly suitable for photodynamic therapy (PDT). A lack of water solubility and low biocompatibility are, in many instances, still hampering the full exploitation of their potential in nanomedicine. Here, we used human serum albumin (HSA) to disperse fullerenes by binding up to five fullerene cages inside the hydrophobic cavities. Albumin was bioconjugated with folic acid to specifically address the folate receptors that are usually overexpressed in several solid tumors. Concurrently, tetramethylrhodamine isothiocyanate, TRITC, a tag for imaging, was conjugated to C-60@HSA in order to build an effective phototheranostic platform. The in vitro experiments demonstrated that: (i) HSA disperses C-60 molecules in a physiological environment, (ii) HSA, upon C-60 binding, maintains its biological identity and biocompatibility, (iii) the C-60@HSA complex shows a significant visible-light-induced production of reactive oxygen species, and (iv) folate bioconjugation improves both the internalization and the PDT-induced phototoxicity of the C-60@HSA complex in HeLa cells

    The Copper Chemical Garden as a Low Cost and Efficient Material for Breaking Down Air Pollution by Gaseous Ammonia

    Get PDF
    Chemical garden (CG) from copper(II) sulfate, nitrate and chloride (CG CuSO, CG Cu(NO), CG CuCl) were grown, and characterized from the structural and compositional point of view by using scanning electron microscopy, X-ray powder diffraction, elemental analysis, thermogravimetric analysis coupled with mass spectrometry, and DR (diffuse reflectance) UV-Vis-NIR spectroscopy. The main crystalline phases, controlled by the anion of the starting salt, were brochantite and kobyashevite for CG CuSO, gerhardtite, rouaite and anthonyite for CG Cu(NO), and atacamite for CG CuCl. The materials were then exposed to ammonia vapors to test the effectiveness of their entrapping property. All materials proved to be very efficient and rapid in the uptake of ammonia, which invariably results in the formation of a Cu(II)/NH complex. However, after a few tens of minutes, CG Cu(NO) and CG CuCl release water and get wet, thereby resulting unsuitable for applications. Only CG CuSO remains dry for at least 25 hours. This makes it a valid candidate for building devices for trapping ammonia, and possibly other gases capable of interacting with Cu(II). The entrapment of ammonia by this material was also characterized by H and Si MAS-NMR XAS spectroscopies.The authors would like to acknowledge the contribution of the European Cooperation in Science and Technology (COST Action, grant number CA17120) supported by the EU Framework Programme Horizon 2020. This research is also under the contribution of progetti di rilevante interesse nazionale (PRIN2017)(it) “Mineral Reactivity, a Key to Understand Large-Scale Processes: from Rock Forming Environments to Solid Waste Recovering/Lithification”, grant number 2017 L83S77
    corecore