85 research outputs found

    Chemokine transport across human vascular endothelial cells

    Get PDF
    Leukocyte migration across vascular endothelium is mediated by chemokines that are either synthesized by the endothelium or transferred across the endothelium from the tissue. The mechanism of transfer of two chemokines, CXCL10 (interferon gamma inducible protein [IP]-10) and CCL2 (macrophage chemotactic protein [MCP]-1), was compared across dermal and lung microvessel endothelium and saphenous vein endothelium. The rate of transfer depended on both the type of endothelium and the chemokine. The permeability coefficient (Pe) for CCL2 movement across saphenous vein was twice the value for dermal endothelium and four times that for lung endothelium. In contrast, the Pe value for CXCL10 was lower for saphenous vein endothelium than the other endothelia. The differences in transfer rate between endothelia was not related to variation in paracellular permeability using a paracellular tracer, inulin, and immunoelectron microscopy showed that CXCL10 was transferred from the basal membrane in a vesicular compartment, before distribution to the apical membrane. Although all three endothelia expressed high levels of the receptor for CXCL10 (CXCR3), the transfer was not readily saturable and did not appear to be receptor dependent. After 30 min, the chemokine started to be reinternalized from the apical membrane in clathrin-coated vesicles. The data suggest a model for chemokine transcytosis, with a separate pathway for clearance of the apical surface

    Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro

    Get PDF
    The blood-brain barrier prevents the entry of many therapeutic agents into the brain. Various nanocarriers have been developed to help agents to cross this barrier, but they all have limitations, with regard to tissue-selectivity and their ability to cross the endothelium. This study investigated the potential for 4 nm coated gold nanoparticles to act as selective carriers across human brain endothelium and subsequently to enter astrocytes. The transfer rate of glucose-coated gold nanoparticles across primary human brain endothelium was at least three times faster than across non-brain endothelia. Movement of these nanoparticles occurred across the apical and basal plasma membranes via the cytosol with relatively little vesicular or paracellular migration; antibiotics that interfere with vesicular transport did not block migration. The transfer rate was also dependent on the surface coating of the nanoparticle and incubation temperature. Using a novel 3-dimensional co-culture system, which includes primary human astrocytes and a brain endothelial cell line hCMEC/D3, we demonstrated that the glucose-coated nanoparticles traverse the endothelium, move through the extracellular matrix and localize in astrocytes. The movement of the nanoparticles through the matrix was >10 µm/hour and they appeared in the nuclei of the astrocytes in considerable numbers. These nanoparticles have the correct properties for efficient and selective carriers of therapeutic agents across the blood-brain barrier

    Expression of chemokines and their receptors by human brain endothelium: Implications for multiple sclerosis

    Get PDF
    Leukocyte migration into the CNS is mediated by chemokines, expressed on the surface of brain endothelium. This study investigated the production of chemokines and expression of chemokine receptors by human brain endothelial cells (HBEC), in vitro and in situ in multiple sclerosis tissue. Four chemokines (CCL2, CCL5, CXCL8 and CXCL10), were demonstrated in endothelial cells in situ, which was reflected in the chemokine production by primary HBEC and a brain endothelial cell line, hCEMC/D3. CXCL8 and CCL2 were constitutively released and increased in response to TNF and/or IFN . CXCL10 and CCL5 were undetectable in resting cells but were secreted in response to these cytokines. TNF strongly increased the production of CCL2, CCL5 and CXCL8, while IFN up-regulated CXCL10 exclusively. CCL3 was not secreted by HBECs and appeared to be confined to astrocytes in situ. The chemokine receptors CXCR1 and CXCR3 were expressed by HBEC both in vitro and in situ, and CXCR3 was up-regulated in response to cytokine stimulation in vitro. By contrast, CXCR3 expression was reduced in silent MS lesions. Brain endothelium expresses particularly high levels of CXCL10 and CXCL8, which may account for the predominant TH1-type inflammatory reaction seen in chronic conditions such as multiple sclerosis

    PPARγ agonist-loaded PLGA-PEG nanocarriers as a potencial treatment for Alzheimer's disease: in vitro and in vivo studies.

    Get PDF
    Objective: The first aim of this study was to develop a nanocarrier that could transport the peroxisome proliferator-activated receptor agonist, pioglitazone (PGZ) across brain endothelium and examine the mechanism of nanoparticle transcytosis. The second aim was to determine whether these nanocarriers could successfully treat a mouse model of Alzheimer's disease (AD). Methods: PGZ-loaded nanoparticles (PGZ-NPs) were synthesized by the solvent displacement technique, following a factorial design using poly (lactic-co-glycolic acid) polyethylene glycol (PLGA-PEG). The transport of the carriers was assessed in vitro, using a human brain endothelial cell line, cytotoxicity assays, fluorescence-tagged nanocarriers, fluorescence-activated cell sorting, confocal and transmission electron microscopy. The effectiveness of the treatment was assessed in APP/PS1 mice in a behavioral assay and by measuring the cortical deposition of β-amyloid. Results: Incorporation of PGZ into the carriers promoted a 50x greater uptake into brain endothelium compared with the free drug and the carriers showed a delayed release profile of PGZ in vitro. In the doses used, the nanocarriers were not toxic for the endothelial cells, nor did they alter the permeability of the blood-brain barrier model. Electron microscopy indicated that the nanocarriers were transported from the apical to the basal surface of the endothelium by vesicular transcytosis. An efficacy test carried out in APP/PS1 transgenic mice showed a reduction of memory deficit in mice chronically treated with PGZ-NPs. Deposition of β-amyloid in the cerebral cortex, measured by immunohistochemistry and image analysis, was correspondingly reduced. Conclusion: PLGA-PEG nanocarriers cross brain endothelium by transcytosis and can be loaded with a pharmaceutical agent to effectively treat a mouse model of AD

    Transcriptional control of the multi-drug transporter ABCB1 by transcription factor Sp3 in different human tissues

    Get PDF
    The ATP-binding cassette (ABC) transporter ABCB1, encoded by the multidrug resistance gene MDR1, is expressed on brain microvascular endothelium and several types of epithelium, but not on endothelia outside the CNS. It is an essential component of the blood-brain barrier. The aim of this study was to identify cell-specific controls on the transcription of MDR1 in human brain endothelium. Reporter assays identified a region of 500bp around the transcription start site that was optimally active in brain endothelium. Chromatin immunoprecipitation identified Sp3 and TFIID associated with this region and EMSA (electrophoretic mobility shift assays) confirmed that Sp3 binds preferentially to an Sp-target site (GC-box) on the MDR1 promoter in brain endothelium. This result contrasts with findings in other cell types and with the colon carcinoma line Caco-2, in which Sp1 preferentially associates with the MDR1 promoter. Differences in MDR1 transcriptional control between brain endothelium and Caco-2 could not be explained by the relative abundance of Sp1:Sp3 nor by the ratio of Sp3 variants, because activating variants of Sp3 were present in both cell types. However differential binding of other transcription factors was also detected in two additional upstream regions of the MDR1 promoter. Identification of cell-specific controls on the transcription of MDR1 indicates that it may be possible to modulate multi-drug resistance on tumours, while leaving the blood brain barrier intact

    Brain endothelial miR-146a negatively modulates T-cell adhesion through repressing multiple targets to inhibit NF-κB activation.

    Get PDF
    Pro-inflammatory cytokine-induced activation of nuclear factor, NF-κB has an important role in leukocyte adhesion to, and subsequent migration across, brain endothelial cells (BECs), which is crucial for the development of neuroinflammatory disorders such as multiple sclerosis (MS). In contrast, microRNA-146a (miR-146a) has emerged as an anti-inflammatory molecule by inhibiting NF-κB activity in various cell types, but its effect in BECs during neuroinflammation remains to be evaluated. Here, we show that miR-146a was upregulated in microvessels of MS-active lesions and the spinal cord of mice with experimental autoimmune encephalomyelitis. In vitro, TNFα and IFNγ treatment of human cerebral microvascular endothelial cells (hCMEC/D3) led to upregulation of miR-146a. Brain endothelial overexpression of miR-146a diminished, whereas knockdown of miR-146a augmented cytokine-stimulated adhesion of T cells to hCMEC/D3 cells, nuclear translocation of NF-κB, and expression of adhesion molecules in hCMEC/D3 cells. Furthermore, brain endothelial miR-146a modulates NF-κB activity upon cytokine activation through targeting two novel signaling transducers, RhoA and nuclear factor of activated T cells 5, as well as molecules previously identified, IL-1 receptor-associated kinase 1, and TNF receptor-associated factor 6. We propose brain endothelial miR-146a as an endogenous NF-κB inhibitor in BECs associated with decreased leukocyte adhesion during neuroinflammation

    Endothelial-Derived Extracellular Vesicles Induce Cerebrovascular Dysfunction in Inflammation

    Get PDF
    Blood–brain barrier (BBB) dysfunction is a key hallmark in the pathology of many neuroinflammatory disorders. Extracellular vesicles (EVs) are lipid membrane-enclosed carriers of molecular cargo that are involved in cell-to-cell communication. Circulating endothelial EVs are increased in the plasma of patients with neurological disorders, and immune cell-derived EVs are known to modulate cerebrovascular functions. However, little is known about whether brain endothelial cell (BEC)-derived EVs themselves contribute to BBB dysfunction. Human cerebral microvascular cells (hCMEC/D3) were treated with TNFα and IFNy, and the EVs were isolated and characterised. The effect of EVs on BBB transendothelial resistance (TEER) and leukocyte adhesion in hCMEC/D3 cells was measured by electric substrate cell-substrate impedance sensing and the flow-based T-cell adhesion assay. EV-induced molecular changes in recipient hCMEC/D3 cells were analysed by RT-qPCR and Western blotting. A stimulation of naïve hCMEC/D3 cells with small EVs (sEVs) reduced the TEER and increased the shear-resistant T-cell adhesion. The levels of microRNA-155, VCAM1 and ICAM1 were increased in sEV-treated hCMEC/D3 cells. Blocking the expression of VCAM1, but not of ICAM1, prevented sEV-mediated T-cell adhesion to brain endothelia. These results suggest that sEVs derived from inflamed BECs promote cerebrovascular dysfunction. These findings may provide new insights into the mechanisms involving neuroinflammatory disorders

    Polarized P-glycoprotein expression by the immortalised human brain endothelial cell line, hCMEC/D3, restricts apical-to-basolateral permeability to rhodamine 123

    Get PDF
    P-glycoprotein (P-gp) expression at the blood-brain barrier prevents unwanted blood-borne toxins and signalling molecules from entering the brain. Primary and immortalised human brain endothelial cells (BECs) represent two suitable options for studying P-gp function in vitro. The limited supply of primary human BECs and their instability over passage number makes this choice unattractive for medium/high throughput studies. The aim of this study was to further characterise the expression of P-gp by an immortalised human BEC line, hCMEC/D3, in order to evaluate their use as an in vitro human blood-brain barrier model. P-gp expression was stable over a high passage number (up to passage 38) and was polarised on the apical plasma membrane, consistent with human BECs in vivo. In addition, hCMEC/D3 cell P-gp expression was comparable, albeit slightly lower to that observed in primary isolated human BECs although P-gp function was similar in both cell lines. The P-gp inhibitors tariquidar and vinblastine prevented the efflux of rhodamine 123 (rh123) from hCMEC/D3 cells, indicative of functional P-gp expression. hCMEC/D3 cells also displayed polarised P-gp transport, since both tariquidar and vinblasine selectively increased the apical-to-basolateral permeability of hCMEC/D3 cells to rh123. The results presented here demonstrate that hCMEC/D3 cells are a suitable model to investigate substrate specificity of P-gp in BECs of human origin
    • …
    corecore