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 Abstract  

  
Leukocyte migration across vascular endothelium is mediated by chemokines that 

are either synthesised by the endothelium or transferred across the endothelium 

from the tissue.  The mechanism of  transfer of  two  chemokines, CXCL10 (IP-10) 

and CCL2 (MCP-1), was compared across dermal and  lung microvessel 

endothelium and saphenous vein endothelium. The rate of transfer depended on 

both the type of endothelium and the chemokine. The permeability coefficient (Pe) 

for  CCL2 movement across saphenous vein was twice the value for dermal 

endothelium and four-times that for lung endothelium. In contrast, the Pe value for  

CXCL10 was lower for saphenous vein endothelium than the other endothelia.  The  

differences in transfer rate between endothelia was not related to variation in 

paracellular permeability using a paracellular tracer, inulin, and immuno-electron 

microscopy showed that CXCL10 was  transferred from the basal membrane in a 

vesicular compartment, before distribution to the apical membrane.  Although all 

three endothelia expressed high levels of  the receptor for CXCL10  (CXCR3),  the 

transfer was not readily saturable and did not appear to be receptor-dependent. 

After 30 minutes,  the chemokine started to be reinternalised from the apical 

membrane in clathrin-coated vesicles. The data suggests a model for chemokine 

transcytosis, with a separate pathway for clearance of the apical surface.  
 

Keywords:  
Chemokines, chemokine receptors, endothelial cells, permeability, transcytosis. 
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Introduction 
 
During inflammation or as part of normal immune surveillance, leukocytes migrate 

into different tissues of the body. The populations of leukocytes that are found in 

each condition vary greatly and are initially determined according to which cells 

migrate across the vascular endothelium of each tissue (Butcher, et al., 1999). The 

specific combination of molecular signals acting on the circulating cells determines 

whether they are stimulated to migrate and this depends on the inflammatory 

stimulus, the  cells present in each tissue and the characteristics of the local 

endothelium. The multistep model of egression of leukocytes from the circulation 

into an inflamed tissue states that migration is principally mediated by the 

expression of chemokines on the luminal surface of the endothelium, but also 

requires appropriate adhesion molecules of the selectin and CAM families 

(Springer, 1994, Baggiolini, 2001).  Endothelium itself  is a major source of 

chemokines and the profile of chemokine expression depends on the tissue of origin 

of the endothelium. This is true both in resting cells or following stimulation with 

the inflammatory cytokines, TNFα and IFNγ  (Hillyer et al., 2003).  Many cell 

types located within the tissues can also produce chemokines  and to elicit 

leukocyte migration from the blood  these chemokines would need to reach the 

luminal surface of the endothelium and be presented on the apical surface (Rot, 

1992).  Many studies have assumed that the chemokines that are expressed on the 

endothelial surface would be a faithful reflection of those produced within the 

tissues. However this assumption has not been tested – transfer of chemokines 

across the endothelium could be selective for some chemokines and not others.  

Likewise luminal expression of chemokines will depend on the profile of 

endothelial glycosaminoglycans which bind chemokines (Middleton et al., 2002) 

and the rate of chemokine clearance from the cell surface. We have previously 

shown that the surface expression of different chemokines varies between 

endothelia and is dependent on the glycosaminoglycans they express (Hillyer and 

Male, 2005).  This paper addresses the question of  whether  the phenotype of the 

endothelium affects chemokine transport.   
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Theoretically there are several ways in which a chemokine can be transported 

using:  1) transcellular transport via an endocytic compartment 2) paracellular 

diffusion between the endothelial cells or 3) movement in the plane of the cell 

membrane, while associated with cell surface molecules (McIntosh et al., 2002).  It 

has been generally assumed that chemokines reach the circulation from the 

inflamed tissue by diffusion through the gaps between the endothelial cells (Ebnet 

et al., 1996) although this route is not available for endothelial barriers with 

continuous tight junctions.  Moreover  Middleton and colleagues (2002) have 

reported that endothelial cells actively transfer chemokines to their luminal surfaces 

attached to macromolecules, specifically glycosaminoglycans, or the Duffy antigen 

receptor for chemokines (DARC). Furthermore, CXCL8 (IL-8) has been reported to 

be internalized from the abluminal surface of the endothelial cells, transported 

transcellularly via plasmalemmal vesicles, and released onto the luminal membrane 

where it appeared located preferentially on tips of membrane protrusions 

(Middleton et al., 1997, Rot et al., 1996).  Despite this, many questions remain 

unanswered.  For example, we do not know whether all chemokines are transfered 

with equal efficiency across endothelia, or whether the transfer varies between 

tissues. Nor do we know if cytokine-activated endothelia transfer chemokines more 

quickly or in greater quantity, than resting endothelia. Several chemokine receptors 

have been identified on endothelia (Murdoch et al., 1999): their functions are 

generally undefined, but one possibility is that they mediate transcytosis.  

  

The aim of this study was to investigate the rate and mechanisms of chemokine 

transfer across different endothelia. Following our previous results, we selected two 

different chemokines, CXCL10 and CCL2, which are not synthesised by resting 

endothelia in significant amounts (Hillyer et al., 2003).  We examined transfer 

across primary human endothelial cultures from dermis, lung and saphenous vein, 

and used immunoelectron microscopy  to elucidate the route by which chemokines 

are transferred to the luminal surface of the cells. 
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Materials and methods 

Cell culture 

Dermal and lung endothelial cells (DMVEC and LMVEC respectively) were 

purchased from Clonetics/Biowhittaker (Wokingham, Berks, UK) and expanded 

according to the manufacturer’s recommendation in EGM2 supplemented medium.  

Saphenous vein endothelium (SVEC) was prepared by collagenase digestion of  

surgical resections obtained with informed consent from patients at Milton Keynes 

Hospital (Marin et al., 2001). Endothelial cells (ECs) were cultured until 

confluence, passaged using trypsin  and were used at passage 5-8 in the assays. For 

a detailed description of the culture conditions see Hillyer et al., 2003. Table 1 

summarises the endogenous production of chemokines CXCL10 and CCL2 in the 

conditions used in these assays as measured by ELISA.   

 

Permeability measurements 

ECs were grown to confluence on transwell clear filters (Costar, Cambridge, MA). 

The polyester membranes (12mm diameter, 0.4µ pore size) were coated for one 

hour  with 1mg/ml collagen type I (Sigma, UK) and fixed by exposure to ammonia 

vapour for 20 minutes. Membranes were then washed 4 times with HBSS. Cells 

were seeded onto the membrane at 1.5 x105 cells per filter and 0.5ml of medium 

was added to the upper compartment and 1.5ml to the lower compartment of the 

transwell plate. Cells were grown until confluence and rested for 24h. Some 

cultures were then activated with 25ng/ml TNFα for 24h. Cytokine-containing 

medium was removed and all cultures were washed before assay with HBSS.  

 

The integrity of the monolayers was assessed before the assays by measuring trans-

endothelial resistance using an EndOhm chamber (World Precision Instruments, 

Hertfordshire, UK). The value represents the resistance (Ohm/cm2) to direct current 

flowing perpendicular to the endothelial monolayer. Actual EC resistance was 

calculated by subtracting the resistance determined in the absence of ECs from that 

in their presence.  The resistance of all of the monolayers varied between 6.5-7.5 

Ohm/cm2 and no change was observed after 24 hours TNFα treatment. However 

the resistance of the endothelia was decreased at the end of the 60 minute transfer 

assays, by 0-2 Ohm/cm2.   
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The integrity of monolayers grown in these conditions was also confirmed by 

staining cells on the filters with trypan blue and viewing by light microscopy, 

although it was not technically possible to carry out light microscopy and 

radioligand transport studies on the same filters. 

 

Inulin transcellular exchange was measured to verify the integrity  of the 

endothelial cells monolayer and to assess variations in paracellular transport (Ek et 

al., 2001, Salvetti et al., 2001).  Cells were washed with HBSS and incubated with 

0.6mg/ml inulin in DMEM  supplemented with BSA 0.1% (Sigma, UK), which had 

been filtered before use (0.22µ). In each experiment, 1.5mls inulin solution was 

added to the well below the filter and 0.5ml DMEM/BSA was placed in the upper 

compartment. Samples were taken from the upper compartment at 5, 15, 25, 35 and 

45 minutes and the transfer of fluoresceinated tracer was measured using a 

multiwell fluorimetric plate reader (Wallac Victor 1420).   

 

Chemokine transport and competition binding experiments 

Endothelial cultures on transwells were prepared as indicated above and the 

chemokine transport experiments were performed in a similar way to the 

experiments with fluoresceinated tracers except for the substitution of 125I-

radiolabelled chemokine in the lower compartment. The initial chemokine 

concentration in the lower compartment was 1.25ng/ml and the specific activity 

was approximately 2000Ci/mmole for each chemokine (125I-IP-10 or 125I-MCP-1 

(Amersham, UK)). In competition experiments, 100ng/ml of unlabelled chemokine 

was also included in the lower compartment.  Samples of 40µl were removed from 

the upper chamber, at 5, 15, 25, 35, 45 and 60 minutes and read on a gamma 

counter (1470 automatic gamma counter Perkin Elmer, Life Sciences, UK).  

 

Chemokine permeability experiments were performed on at least three separate 

occasions for each endothelial cell type. The permeability coefficients (Pe) were 

calculated according to the method of Dehouck  and colleagues (1992) for each 

endothelial cell type in each experiment and the Pe values from all the experiments 

were combined and compared in figure 2. 
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Pe is calculated as follows:  The cleared volume of radioactive tracer (radioactivity 

in the upper chamber in cpm/initial radioactivity in the lower chamber in cpm/µl) 

was plotted against time. The slopes of the curves were fitted using linear least 

squares regression to give the rate of clearance (or  permeability x surface area, PS) 

in µl/min, where me is the slope of the curve corresponding to the PS value of 

endothelial cell monolayers on filters and mf is the slope of the curve corresponding 

to the PS of the filter alone.  Pe of each endothelial monolayer was then calculated 

using the following formulae: 

1/PS = 1/me – 1/mf   

 Pe = PS/S 

Where PS (clearance) is the permeability surface area product, and S is the surface 

area of the filter. The permeability values (Pe) are expressed as microlitres cleared 

per minute per cm2 membrane. 

 

Differences in Pe values between the endothelia and the effects of TNFα  

pretreatment (25ng/ml for 24hours applied to the apical surface) were assessed 

using ANOVA, followed by a post-hoc Newman Keuls, multiple comparison test. 

 

Immunoelectron microscopy 

All  cell types were washed once  with PBS and with 0.01% glutaraldehyde/ 4% 

paraformaldehyde  in 0.1M phosphate buffer (PB) for 1h at RT. The filters were 

then treated with 1% sodium borohydride in 0.1M PB for 30 minutes and freeze-

thawed through liquid freon and then liquid nitrogen. After blocking non-specific 

binding for 30 minutes in 0.5% bovine serum albumin (BSA) in 0.1M tris-buffered 

saline (TBS), the filters were incubated for 48h at 4oC in a 1:100 dilution of goat 

anti-IP-10 (R&D systems) in 0.1% BSA in TBS or a 1:10 dilution of mouse IgG 

anti-CXCR3 (R&D systems).  

 

For IP-10 immunoperoxidase labelling, the secondary antibody was  a 1:200 

dilution of biotinylated donkey anti-goat IgG (Jackson ImmunoResearch) followed 

by a 1:200 dilution of avidin-biotin complex of the Elite kit (Vector) for 30 minutes 

at RT and then visualised with the chromogen diaminobenzidene. 
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For silver-enhanced immunogold labelling of CXCR3, the incubation with primary 

antibody was followed by a 1:50 dilution of anti-mouse IgG  coupled to 1nm gold 

(British BioCell International, BBI) at 1:50 for 2h at RT. The bound gold particles 

were fixed with 2% glutaraldehyde, washed in 0.2M citrate buffer before silver 

enhancement (BBI) of 6-8 minutes. The filters were post-fixed in 2% osmium 

tetroxide in PB, dehydrated through a graded series of ethanols then propylene 

oxide before finally flat-embedding in Epon between two sheets of Aclar. Ultrathin 

sections were collected on 300 mesh copper grids, counter-stained with uranyl 

acetate and lead citrate before examination in a JEM 1010 electron microscope. 

 

FACS analysis of chemokine receptors 

Endothelial cells were detached from their culture wells using trypsin/EDTA and 

fixed in 4% paraformaldehyde diluted in phosphate-buffered isotonic saline (PBS), 

for 10 minutes on ice and permeabilised for one minute using 0.1% Triton X-100 in 

PBS  and were then washed in PBS and blocked using 10% normal goat 

serum/0.1mg/ml rabbit IgG in PBS for 30 mins on ice. 1 x 105 cells were taken per 

microfuge tube in a volume of  25µl.  FITC-conjugated, anti-chemokine receptor 

antibody was added to each tube and incubated at 4˚C for 1 hour. CXCR3, and 

CCR2 were detected by the addition of 10µl antibody as supplied (R & D systems).  

The cells were washed with PBS and then resuspended in 500µl PBS, before 

analysis using a Becton Dickinson FACSCalibur. 10,000 events were analysed per 

chemokine receptor. The results shown are one representative of at least three 

experiments, giving similar results. 
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Results  
Selective transfer of chemokines across endothelial monolayers 

We examined the rate of transfer of the chemokines CXCL10 (IP-10)  and CCL2 

(MCP-1) across lung, dermal and saphenous vein EC monolayers  from the basal to 

the apical suface over a period of 60 minutes expressed as cleared volume from the 

lower chamber (Figure 1).  Note that the volume cleared of tracer is much higher 

for filters with no cells than those with endothelial cell monolayers, indicating that 

all three endothelia constituted a barrier to the free diffusion of the chemokine from 

the lower to the upper compartment.  This figure shows one representative 

experiment using all three different endothelial cell types, and with triplicate 

determinations (ie 3 separate monolayers) of each endothelial cell type.   

The results indicated that the rate of  125I-CXCL10  transport was slower across 

SVEC than  the microvascular endothelium whereas the transfer of   125I-CCL2  

was higher across SVEC than the other endothelia. The slopes of the curves, or 

clearance for each chemokine,  were used to calculate the permeability coefficient 

(Pe) for each endothelium and the combined results from all experiments are shown 

in figure 2.  Transfer of CCL2 was significantly faster across SVECs than 

LMVECs, with DMVECs having intermediate rates. Conversely, transfer of 

CXCL10 was significantly slower across SVECs than across LMVECs. The 

absolute Pe values for CXCL10 transfer were in general lower than the values for 

CCL2, and this was particularly marked for SVECs.  (The rate of CXCL10 transfer 

across collagen-coated filters lacking endothelium was also lower than for CCL2, 

which may reflect the fact that CXCL10 binds much more strongly to collagen than 

CCL2.) Note also that the endogenous production of chemokines by cells in these 

experiments was always much lower than the exogenous concentrations used in the 

transport assays (Table 1).   

 

In order to determine whether chemokine transfer is enhanced by inflammatory 

cytokines,  cells were treated for 24 hours before the assay with 25ng/ml TNFα.  

Figure 2 compares the permeability coefficient of  CCL2 and CXCL10 on treated 

and untreated cells.   Pretreatment of  SVEC and DMVECs  with TNFα did not 

alter the rate of chemokine transfer. LMVECs pretreated for 24h with TNFα did 
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show an increase in the mean Pe value of approximately 40% in comparison with 

untreated cells, but this was not significant (p>0.05).  

 

The data imply that there are differences between endothelia in the rate at which 

chemokines are transferred but that this also depends on the type of chemokine. 

 

 

We  considered the possibility that receptor-mediated uptake could account for the 

differences in chemokine transfer by the endothelia. FACS analysis showed that the 

cells strongly expressed CXCR3, the sole receptor for CXCL10 (Figure 3). CCR2, 

the primary receptor for CCL2, was not detected on lung or saphenous vein 

endothelium, although weak expression was present on dermal endothelium (Figure 

3). The results show that  SVECs which have the lowest transfer rate of CXCL10, 

have the highest expression of CXCR3, while DMVECs, which have the highest 

transfer of CXCL10, had comparatively low CXCR3 expression.  These 

observations do not support the theory that specific chemokine receptors are 

involved in transcytosis of the chemokines, or account for the differences between 

the endothelia.  

 

Route of chemokine transfer 

We considered two possible routes of chemokine transfer, the paracellular route, 

either free in solution or associated with cell surface glycoproteins, and the 

transcellular route.  In order to test whether there was any variation in the 

paracellular route of transfer we measured the permeability of endothelial 

monolayers to inulin-FITC. This tracer was chosen as a paracellular marker because 

it does not cross cell membranes (Kazakoff et al., 1995).  The results showed  that 

the amount of inulin transferred across each endothelial monolayer increased 

linearly up to 35 minutes and that the permeability was  similar  for each 

endothelial cell type (Figure 4). This observation suggests that the differences 

between endothelia seen in chemokine transfer (Figs 1 and 2) cannot be accounted 

for by differences in paracellular diffusion. 

 

To gain some insight into whether the transport mechanism was chemokine-specific 

we attempted to inhibit the transfer of radiolabelled chemokine (1.25ng/ml) with an 
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80x excess of unlabelled chemokine (100ng/ml). Chemokine transfer was partly 

inhibited in some experiments (<20%), but the effect was not consistently 

significant.  (Note that the concentration of  chemokine used here is sufficient to 

block binding to high affinity chemokine receptors, but cannot block binding to the 

endothelial proteoglycans, which are present at higher levels, and to which binding 

is of lower affinity. We have used up to 1000ng/ml chemokine without saturating 

surface proteoglycans on these endothelia.)  

 

To identify the route of chemokine transfer, we first carried out immuno-electron 

microscopy to  localise CXCL10 at different times following addition of chemokine 

to the lower chamber. Immuno-electron microscopy using  peroxidase  labelling 

revealed that CXCL10 is detectable on the basal membrane of the dermal 

endothelium within 1 minute of application (Figure 5a) and is rapidly transferred to 

the apical membrane. The micrograph  in figure 5a shows a section of endothelium 

that immediately overlies a membrane pore. It is notable that the CXCL10 is 

present only in a column that overlies the pore, which suggests that transfer is 

occurring across the cell by transcytosis.  From 5 to 25 minutes we observed less 

CXCL10  labeling on the basal membrane of the cell but some focal labelling 

located in vesicles, through the cytoplasm of the cells . At this time the chemokine  

is observed distributed along the apical membrane (Figure 5b). This pattern of 

staining, with CXCL10 located suceessively at the basal membrane, within the cell 

and at the luminal membrane was consistently seen with all three endothelia. 

Staining on lateral membranes or around intercellular junctions was not seen.  

 

CXCR3  identified by immunogold labelling was almost entirely confined to the 

apical membrane of the cells and was not associated with the vesicular transcytosis 

compartments (Figure 5c). This observation again suggests that CXCR3 is not 

involved in the transcytosis of CXCL10 from the basal to the luminal membrane.  

The candidate vesicles for transfer of the chemokine are caveolae and clathrin-

coated vesicles (CCV).  Using electron microscopy, it  was not possible to identify 

vesicles in dermal endothelium, but lung endothelial cells were seen to contain  

vesicles of ~100nm diameter, associated with both the  basal and apical membranes 

(Figures 6a and 6b). In TNFα- treated lung endothelium,  at 60 minutes, larger  
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vesicles associated with CXCL10 were present at the apical membrane (Figure 6c); 

these structures, with electron dense membranes, are suggestive of CCVs. The 

electron micrographs  suggest that chemokines are transferred rapidly across the 

cell from the basal to the apical membrane, within a vesicular compartment and 

may then be reinternalised at a later stage (>30min) via CCV from the luminal 

membrane. Transcytosis of CXCL10 appears  not to occur via the specific 

chemokine receptor, CXCR3, although it is possible that this receptor is involved in 

reinternalisation of CXCL10 from the apical membrane.  

 

 

Discussion 

Chemokines have been convincingly implicated in the induction of leukocyte 

emigration during inflammation. It has been assumed that chemokines would either 

diffuse through the intercellular gaps between ECs or be transferred laterally in the 

plasma membrane by attachment to membrane glycoproteins or  be transcytosed 

across the endothelium to be presented at the cell surface (Middleton et al., 2002). 

However it remains unclear if the process previously described for CXCL8 

transport across EC can be extrapolated to other chemokines (Middleton et al., 

1997). In this report we have examined the transport of two chemokines across 

human ECs derived from different vascular beds. 

 

Our results clearly show that there are significant differences in the transport of 

CXCL10 compared with CCL2 across endothelia. Although the rate of transfer of 

CCL2 was somewhat greater than that of CXCL10 across lung and dermal 

endothelia,  saphenous vein endothelium showed a particularly high transfer of  

CCL2 and low transfer of CXCL10.  This suggests that some element(s) in the 

transport system varies between the endothelia, and this manifests itself as a 

selective difference in chemokine transfer. The transfer rate is not related to the 

level of expression of specific chemokine receptors (CXCR3, CCR2), which 

suggests that receptor-mediated transport is not the explanation. However, we have 

previously shown that dermal and lung microvessels bind CXCL10 at a 

significantly higher level than does saphenous vein endothelium (Hillyer and Male, 

2005). It is possible therefore that the low rate of transfer of CXCL10 by saphenous 
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vein endothelium is due to a low uptake on cell surface glycosaminoglycans,  prior 

to transcytosis. The differences between transfer rates of the different chemokines, 

could therefore be accounted for by the different chemokine binding properties of 

the endothelia which relates to the  heparan-sulphate proteoglycan (HSPG)  binding 

specificities of the chemokines (Witt and Lander, 1994, Lortat-Jacob et al., 2002) 

and the expression of particular sets of HSPG by each endothelium. 

 

The functional role  of the numerous specific endothelial chemokine receptors still 

remains undetermined. The electron microscopy did however demonstrate that 

CXCR3 is exclusively at the apical membrane and the receptor is therefore a 

candidate for mediating clearance of the apical membrane of excess chemokines, ie 

endocytosis, rather than transcytosis.  Our observation of CXCL10 clearance into 

clathrin-coated vesicles, is conceptually similar to the  agonist induced 

internalisation of  chemokine receptors, including CCR5, into clathrin-coated 

vesicles (Signoret et al., 2005, Venkatesan et al., 2003). 

 

Other studies have shown that inflammatory cytokines including TNFα can 

enhance permeability of some endothelia, and the number of vesicular profiles seen 

on endothelia at sites of inflammation in vivo, is often increased. We therefore 

looked for the possibility of enhanced chemokine transfer in response to TNFα. 

Interestingly, an increased transfer was only seen with the lung endothelium, 

corresponding to ~40% increase with CXCL10, which was not statistically 

significant. The increase of endothelial permeability in response to TNFα is often 

ascribed to an increase in paracellular permeability. However these results indicate 

that any increased transfer of CXCL10 is more probably due to enhanced 

transcytosis, either as a result of  enhanced chemokine binding to the cell surface of 

cytokine-treated cells and/or increased vesicular traffic across cytokine-activated 

endothelium. 

 

One other study has considered the possibility that chemokine transcytosis is 

receptor mediated. Dzenko and colleagues (2001) described CCR2 on mouse brain 

endothelium and proposed that  transcytosis of CCL2 could be mediated by the 

receptor. Their experiments showed that endocytosis was CCR2-mediated, but it 
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was uncertain whether this was the initial stage of transcytosis, or internalisation as 

part of a mechanism to clear the cell surface.   It is also notable in our study that 

100ng/ml of cold chemokine gave only a small reduction in transcytosis. This level 

of chemokine is sufficient to block high affinity binding to chemokine receptors, 

but we have found that chemokine binding to glycosaminoglycans does not saturate 

even at  1000ng/ml. This is related to the high level of glycosaminoglycans on the 

endothelial surface and the relatively low affinity of binding of chemokines to 

them. As it was not technically possible to saturate the surface glycosaminoglycans 

with unlabelled chemokine, it was not possible to establish whether chemokine 

binding to the cell surface proteoglycans is required for transcytosis, or whether 

fluid-phase movement can account for the level of  chemokine transfer.   

 

The rapid transfer rate of the chemokines  accords with other descriptions of 

transcytosis (Schnitzer, 2001).  Indeed Mundy and colleagues (2002)  have shown, 

using GFP-coupled caveolin, that caveolae  can move at rates of up to 2µm/second, 

attached to microtubules. This is sufficiently fast to account for the rapid transfer 

across the endothelium, which occurs in less than 5 minutes. Originally the finding 

that most endothelial caveolae were associated with the basal or apical membranes 

lead to the proposal that caveolae were static structures. The current view is that the 

paucity of caveolae within the cytoplasm reflects the fact that once they have 

detached from parts of the actin cytoskeleton underlying the cell membranes, their 

passage along microtubules is very fast (McIntosh et al., 2002).  

 

Our immuno-electron microscopy studies clearly indicated a progressive movement 

of  CXCL10 from the abluminal-to-luminal side of the endothelial cell. At the early 

time points (1min) CXCL10 could be detected binding to the abluminal membrane 

of the EC whereas after 25minutes most of the labelling was located on the luminal 

side of the cell with less CXCL10 located in the cytoplasm. In this work we saw 

only small numbers of caveolae within the cells or associated with the basal and 

apical surfaces. This may be related to the in vitro culture system. In the absence of 

shear force, the numbers of caveolae seen in vitro, are generally much less than 

seen on comparable endothelia in vivo (Rizzo et al., 1998, Schnitzer, 2001). Over 

the last decades the significance of transendothelial transport by the caveolae 
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system has been debated and there is considerable data to indicate a role in the 

transport of macromolecules (McIntosh et al., 2002). In vitro, it appears that  the 

transport of chemokines involves active shuttling of vesicles across the cells. In 

vivo, we would anticipate that the capacity of endothelium to transfer chemokines 

is much more important, because of the higher level of transcytosis, related to the 

metabolic demands of the tissue.  

 

Finally the importance of transendothelial transfer of chemokines during 

inflammation, must be placed in the context of endothelial chemokine production. 

These endothelia are capable of producing significant quantities of chemokines 

(Hillyer et al, 2003). Although production of CXCL10 and CCL2  in response to 

inflammatory cytokines is generally moderate or comparable to production by cells 

from the  tissues, endothelial production of (eg) CXCL8  is very high, and likely to 

exceed production by tissue cells. Thus the migration of cells such as neutrophils 

and macrophages in response to CXCL8 is principally controlled by endothelium, 

whereas the migration of T cells, mediated by CXCL10, may equally be induced by 

chemokines released in the tissues  which have been transported across the 

endothelium.  

 

This report  demonstrates the importance of chemokine transfer and presentation by 

endothelial cells and its potential contribution to the control of leukocyte traffic. 

Tissue-specific variations in endothelial chemokine synthesis and presentation have 

been documented previously. This report shows that endothelia from different 

tissues selectively transfer particular chemokines  which further emphasizes the 

importance of the endothelium in controlling local inflammatory responses. 
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Table 1  Production of chemokines by endothelia: pg/hour/cm2. 
     CCL21    CXCL101  
Endothelium   Resting           TNFα 2 Resting TNFα2 
 
Dermal microvessel  0  158  0  32 
 
Lung microvessel  0  333  0  18 
 
Saphenous vein  6.7  76  0  0 
 
 

1. Chemokine production measured by capture ELISA in the supernatant of 
confluent endothelial cell monolayers (1cm2) after 24 hours in culture. 

2. Cultures were stimulated with 25ng/ml human TNFα, for the 24hour culture 
period. 
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 Figure 1. 
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Figure 2.                                       
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Figure 3. 
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 Figure 4 
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Figure 5 
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Figure 6 
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Legends 

 

Fig. 1: Transfer of chemokines across  endothelia.  

The rate of transfer of  radiolabelled CCL2 and CXCL10 across monolayers of lung 

(LMVEC), dermal (DMVEC) and saphenous vein endothelium (SVEC), over one hour, 

compared with the rate of diffusion across blank collagen-coated filters.  Values are 

calculated as cleared volumes, and each value represents mean ±SD from triplicate 

cultures.  

 

Fig. 2: Transfer rate of chemokines across endothelia. 

The rate of transfer of CXCL10 and CCL2 across untreated and TNFα-treated endothelia 

(25ng/ml for 24h) is expressed as the permeability coefficient (Pe), with combined data 

from three experiments, and triplicate cultures in each experiment. Values represent the 

95% confidence interval of the mean. The data was analysed by ANOVA (p<0.05 for both 

chemokines) and post-hoc Newman Keuls test to determine whether there were differences 

between endothelia, or between treated and untreated cells. The double-ended arrows 

indicate significant differences between those cell types  (p<0.05).   

 

Fig. 3: Expression of chemokine receptors for CXCL10 and CCL2 on endothelia. 

The expression of receptors CXCR3 and CCR2 was measured by FACS analysis on lung, 

dermal and saphenous vein endothelia (LMVEC, DMVEC, SVEC), shown as filled 

histograms, compared with isotype-matched control antibodies (open histograms). 

 

Fig. 4: Para-cellular transport of inulin across endothelial monolayers.  

The results show  transfer of Inulin across  resting endothelial monolayers over 45 minutes, 

as determined by fluorescence in the upper chamber (arbitrary units). 
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Fig. 5:  Localisation of CXCL10 and CXCR3. 

5a. Dermal endothelium pretreated with TNFα , and for 1minute prior to fixation with 

CXCL10 at the basal membrane. Immunoperoxidase staining for CXCL10 identifies 

chemokine at the basal membrane (arrow) and in a column extending to the apical 

membrane. The micrograph shows a region of the cell that overlies a pore in the membrane 

filter (F). Bar = 1micron 

5b. Dermal endothelium pretreated with TNFα and for 25minutes prior to fixation with 

CXCL10 at the basal membrane. Immunoperoxidase staining for CXCL10 identifies 

intracellular chemokine  and at the apical membrane (arrows). Bar = 0.5micron 

5c.  Dermal endothelium, pretreated with TNFα and for 25minutes prior to fixation with 

CXCL10 at the basal membrane. Silver-enhanced immunogold staining shows CXCR3 to 

be wholly confined to the apical membrane (arrows). Bar = 0.5micron. 

 

Fig.  6: Vesicular compartments in lung endothelium. 

6a, 6b.  Lung endothelium, treated 25 minutes prior to fixation with CXCXL10 at the basal 

surface, and immunoperoxidase stained for CXCL10.  Clusters of vesicles (possibly 

caveolae) are seen at both apical and basal membranes (arrowed).  Labelled intracellular 

vesicles  (small arrows) are associated  with the cluster at the apical membrane. Bars = 

1micron 

6c. Lung endothelium pretreated with TNFα and then for 60 minutes before fixation with 

CXCL10 at the basal membrane, stained by immunoperoxidase for CXCL10. CXCL10 is 

located at the apical surface and appears to be reinternalised into a vesicle with an electron-

dense rim (possibly a clathrin-coated vesicle). Arrows indicate immunoperoxidase product. 

 

 

 


