283 research outputs found
Dermatosis neglecta in a case of multiple fractures, shoulder dislocation and radial nerve palsy in a 35-year-old man: a case report
<p>Abstract</p> <p>Introduction</p> <p>Dermatosis neglecta is an often misdiagnosed and under-diagnosed condition. In dermatosis neglecta, a progressive accumulation of sebum, sweat, keratin and other dirt and debris, occurs due to inadequate local hygiene resulting in a localized hyperpigmented patch or a verrucous plaque. Vigorous rubbing with alcohol-soaked gauze or soap and water results in a complete resolution of the lesion. This is the first case of dermatosis neglecta reported in a patient with multiple traumatic injuries.</p> <p>Case presentation</p> <p>We report a case of a 35-year-old male Caucasian of Pakistani origin, with multiple fractures, neurological deficit and immobility sustained in a fall, leading to the development of dermatosis neglecta of the left hand.</p> <p>Conclusion</p> <p>Early and prompt clinical recognition of this condition eliminates the need for aggressive diagnostic and therapeutic procedures.</p
Gender differences in the physiological responses and kinematic behaviour of elite sprint cross-country skiers
Gender differences in performance by elite endurance athletes, including runners, track cyclists and speed skaters, have been shown to be approximately 12%. The present study was designed to examine gender differences in physiological responses and kinematics associated with sprint cross-country skiing. Eight male and eight female elite sprint cross-country skiers, matched for performance, carried out a submaximal test, a test of maximal aerobic capacity (VO2max) and a shorter test of maximal treadmill speed (Vmax) during treadmill roller skiing utilizing the G3 skating technique. The men attained 17% higher speeds during both the VO2max and the Vmax tests (P < 0.05 in both cases), differences that were reduced to 9% upon normalization for fat-free body mass. Furthermore, the men exhibited 14 and 7% higher VO2max relative to total and fat-free body mass, respectively (P < 0.05 in both cases). The gross efficiency was similar for both gender groups. At the same absolute speed, men employed 11% longer cycles at lower rates, and at peak speed, 21% longer cycle lengths (P < 0.05 in all cases). The current study documents approximately 5% larger gender differences in performance and VO2max than those reported for comparable endurance sports. These differences reflect primarily the higher VO2max and lower percentage of body fat in men, since no gender differences in the ability to convert metabolic rate into work rate and speed were observed. With regards to kinematics, the gender difference in performance was explained by cycle length, not by cycle rate
Identification of novel small molecules that inhibit STAT3-dependent transcription and function
Activation of Signal Transducer and Activator of Transcription 3 (STAT3) has been linked to several processes that are critical for oncogenic transformation, cancer progression, cancer cell proliferation, survival, drug resistance and metastasis. Inhibition of STAT3 signaling has shown a striking ability to inhibit cancer cell growth and therefore, STAT3 has become a promising target for anti-cancer drug development. The aim of this study was to identify novel inhibitors of STAT-dependent gene transcription. A cellular reporter-based system for monitoring STAT3 transcriptional activity was developed which was suitable for high-throughput screening (Z’ = 0,8). This system was used to screen a library of 28,000 compounds (the ENAMINE Drug-Like Diversity Set). Following counter-screenings and toxicity studies, we identified four hit compounds that were subjected to detailed biological characterization. Of the four hits, KI16 stood out as the most promising compound, inhibiting STAT3 phosphorylation and transcriptional activity in response to IL6 stimulation. In silico docking studies showed that KI16 had favorable interactions with the STAT3 SH2 domain, however, no inhibitory activity could be observed in the STAT3 fluorescence polarization assay. KI16 inhibited cell viability preferentially in STAT3-dependent cell lines. Taken together, using a targeted, cell-based approach, novel inhibitors of STAT-driven transcriptional activity were discovered which are interesting leads to pursue further for the development of anti-cancer therapeutic agents
Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots
A microarray carrying 5,648 probes of Medicago truncatula root-expressed genes was screened in order to identify those that are specifically regulated by the arbuscular mycorrhizal (AM) fungus Gigaspora rosea, by Pi fertilisation or by the phytohormones abscisic acid and jasmonic acid. Amongst the identified genes, 21% showed a common induction and 31% a common repression between roots fertilised with Pi or inoculated with the AM fungus G. rosea, while there was no obvious overlap in the expression patterns between mycorrhizal and phytohormone-treated roots. Expression patterns were further studied by comparing the results with published data obtained from roots colonised by the AM fungi Glomus mosseae and Glomus intraradices, but only very few genes were identified as being commonly regulated by all three AM fungi. Analysis of Pi concentrations in plants colonised by either of the three AM fungi revealed that this could be due to the higher Pi levels in plants inoculated by G. rosea compared with the other two fungi, explaining that numerous genes are commonly regulated by the interaction with G. rosea and by phosphate. Differential gene expression in roots inoculated with the three AM fungi was further studied by expression analyses of six genes from the phosphate transporter gene family in M. truncatula. While MtPT4 was induced by all three fungi, the other five genes showed different degrees of repression mirroring the functional differences in phosphate nutrition by G. rosea, G. mosseae and G. intraradices
Inducible expression of Pisum sativum xyloglucan fucosyltransferase in the pea root cap meristem, and effects of antisense mRNA expression on root cap cell wall structural integrity
Mitosis and cell wall synthesis in the legume root cap meristem can be induced and synchronized by the nondestructive removal of border cells from the cap periphery. Newly synthesized cells can be examined microscopically as they differentiate progressively during cap development, and ultimately detach as a new population of border cells. This system was used to demonstrate that Pisum sativum L. fucosyl transferase (PsFut1) mRNA expression is strongly expressed in root meristematic tissues, and is induced >2-fold during a 5-h period when mitosis in the root cap meristem is increased. Expression of PsFut1 antisense mRNA in pea hairy roots under the control of the CaMV35S promoter, which exhibits meristem localized expression in pea root caps, resulted in a 50–60% reduction in meristem localized endogenous PsFut1 mRNA expression measured using whole mount in situ hybridization. Changes in gross levels of cell wall fucosylated xyloglucan were not detected, but altered surface localization patterns were detected using whole mount immunolocalization with CCRC-M1, an antibody that recognizes fucosylated xyloglucan. Emerging hairy roots expressing antisense PsFut1 mRNA appeared normal macroscopically but scanning electron microscopy of tissues with altered CCRC-M1 localization patterns revealed wrinkled, collapsed cell surfaces. As individual border cells separated from the cap periphery, cell death occurred in correlation with extrusion of cellular contents through breaks in the wall
Withanolides and related steroids
Since the isolation of the first withanolides in the mid-1960s, over 600 new members of this group of compounds have been described, with most from genera of the plant family Solanaceae. The basic structure of withaferin A, a C28 ergostane with a modified side chain forming a δ-lactone between carbons 22 and 26, was considered for many years the basic template for the withanolides. Nowadays, a considerable number of related structures are also considered part of the withanolide class; among them are those containing γ-lactones in the side chain that have come to be at least as common as the δ-lactones. The reduced versions (γ and δ-lactols) are also known. Further structural variations include modified skeletons (including C27 compounds), aromatic rings and additional rings, which may coexist in a single plant species. Seasonal and geographical variations have also been described in the concentration levels and types of withanolides that may occur, especially in the Jaborosa and Salpichroa genera, and biogenetic relationships among those withanolides may be inferred from the structural variations detected. Withania is the parent genus of the withanolides and a special section is devoted to the new structures isolated from species in this genus. Following this, all other new structures are grouped by structural types.
Many withanolides have shown a variety of interesting biological activities ranging from antitumor, cytotoxic and potential cancer chemopreventive effects, to feeding deterrence for several insects as well as selective phytotoxicity towards monocotyledoneous and dicotyledoneous species. Trypanocidal, leishmanicidal, antibacterial, and antifungal activities have also been reported. A comprehensive description of the different activities and their significance has been included in this chapter. The final section is devoted to chemotaxonomic implications of withanolide distribution within the Solanaceae.
Overall, this chapter covers the advances in the chemistry and biology of withanolides over the last 16 years.Fil: Misico, Rosana Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (i); ArgentinaFil: Nicotra, V.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; ArgentinaFil: Oberti, Juan Carlos María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; ArgentinaFil: Barboza, Gloria Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad
Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacia; ArgentinaFil: Gil, Roberto Ricardo. University Of Carnegie Mellon; Estados UnidosFil: Burton, Gerardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (i); Argentin
- …