653 research outputs found

    Nitrogen cycle disruption through the application of de-icing salts on upland highways

    Get PDF
    It is hypothesized that episodic introductions of road salt severely disrupt the soil nitrogen cycle at a range of spatial and temporal scales. A field-scale study has confirmed impacts on the nitrogen cycle in soil, soil solution and river samples. There is evidence that ammonium-N retention on cation exchange sites has been reduced by the presence of sodium ions, and that ammonium-N has been flushed from the exchange sites. Increases in soil pH have been caused in naturally acidic uplands. These have enhanced mineralization of organic-N, especially nitrification, leading to a reduction in the mineralizable-N pool of roadside soils. There is evidence to support the hypothesis that organic matter content has been lowered over decades either through desorption or dispersal processes. Multiple drivers are identified that contribute to the disruption of nitrogen cycling processes, but their relative importance is difficult to quantify unequivocally. The influence of road salt on soil and soil solution declines with distance from the highway, but impacts on water chemistry in a local stream are still strongly evident at some distance from the road

    Field validation of habitat suitability models for vulnerable marine ecosystems in the South Pacific Ocean:Implications for the use of broad-scale models in fisheries management

    Get PDF
    AbstractManagement of human activities which impact the seafloor in the deep ocean is becoming increasingly important as bottom trawling and exploration for minerals, oil, and gas continue to extend into regions where fragile ecosystems containing habitat-forming deep-sea corals and sponges may be found. Spatial management of these vulnerable marine ecosystems requires accurate knowledge of their distribution. Predictive habitat suitability modelling, using species presence data and a suite of environmental predictor variables, has emerged as a useful tool for inferring distributions outside of known areas. However, validation of model predictions is typically performed with non-independent data. In this study, we describe the results of habitat suitability models constructed for four deep-sea reef-forming coral species across a large region of the South Pacific Ocean using MaxEnt and Boosted Regression Tree modelling approaches. In order to validate model predictions we conducted a photographic survey on a set of seamounts in an un-sampled area east of New Zealand. The likelihood of habitat suitable for reef-forming corals on these seamounts was predicted to be variable, but very high in some regions, particularly where levels of aragonite saturation, dissolved oxygen, and particulate organic carbon were optimal. However, the observed frequency of coral occurrence in analyses of survey photographic data was much lower than expected, and patterns of observed versus predicted coral distribution were not highly correlated. The poor performance of these broad-scale models is attributed to lack of recorded species absences to inform the models, low precision of global bathymetry models, and lack of data on the geomorphology and substrate of the seamounts at scales appropriate to the modelled taxa. This demonstrates the need to use caution when interpreting and applying broad-scale, presence-only model results for fisheries management and conservation planning in data poor areas of the deep sea. Future improvements in the predictive performance of broad-scale models will rely on the continued advancement in modelling of environmental predictor variables, refinements in modelling approaches to deal with missing or biased inputs, and incorporation of true absence data

    Pre-validation of a MALDI MS proteomics-based method for the reliable detection of blood and blood provenance

    Get PDF
    Abstract: The reliable identification of blood, as well as the determination of its origin (human or animal) is of great importance in a forensic investigation. Whilst presumptive tests are rapid and deployed in situ, their very nature requires confirmatory tests to be performed remotely. However, only serological tests can determine blood provenance. The present study improves on a previously devised Matrix Assisted Laser Desorption Ionisation Mass Spectrometry (MALDI MS)—proteomics based method for the reliable detection of blood by enabling the determination of blood provenance. The overall protocol was developed to be more specific than presumptive tests and faster/easier than the gold standard liquid chromatography (LC) MS/MS analysis. This is considered a pre-validation study that has investigated stains and fingermarks made in blood, other biofluids and substances that can elicit a false-positive response to colorimetric or presumptive tests, in a blind fashion. Stains and marks were either untreated or enhanced with a range of presumptive tests. Human and animal blood were correctly discriminated from other biofluids and non-biofluid related matrices; animal species determination was also possible within the system investigated. The procedure is compatible with the prior application of presumptive tests. The refined strategy resulting from iterative improvements through a trial and error study of 56 samples was applied to a final set of 13 blind samples. This final study yielded 12/13 correct identifications with the 13th sample being correctly identified as animal blood but with no species attribution. This body of work will contribute towards the validation of MALDI MS based methods and deployment in violent crimes involving bloodshed

    Implications of Electronics Constraints for Solid-State Quantum Error Correction and Quantum Circuit Failure Probability

    Full text link
    In this paper we present the impact of classical electronics constraints on a solid-state quantum dot logical qubit architecture. Constraints due to routing density, bandwidth allocation, signal timing, and thermally aware placement of classical supporting electronics significantly affect the quantum error correction circuit's error rate. We analyze one level of a quantum error correction circuit using nine data qubits in a Bacon-Shor code configured as a quantum memory. A hypothetical silicon double quantum dot quantum bit (qubit) is used as the fundamental element. A pessimistic estimate of the error probability of the quantum circuit is calculated using the total number of gates and idle time using a provably optimal schedule for the circuit operations obtained with an integer program methodology. The micro-architecture analysis provides insight about the different ways the electronics impact the circuit performance (e.g., extra idle time in the schedule), which can significantly limit the ultimate performance of any quantum circuit and therefore is a critical foundation for any future larger scale architecture analysis.Comment: 10 pages, 7 figures, 3 table

    Little Evidence of Benthic Community Resilience to Bottom Trawling on Seamounts After 15 Years

    Get PDF
    The resilience and recovery dynamics of deep-sea habitats impacted by bottom trawling are poorly known. This paper reports on a fishing impact recovery comparison based on four towed camera surveys over a 15-year period (2001–2015) on a group of small seamounts on the Chatham Rise, east of New Zealand, on which pre-disturbance benthic communities are dominated by thicket-forming scleractinian corals. The six seamounts studied encompass a range of trawl histories, including one with high and persistent levels of trawling throughout the survey period, two with intermittent and intermediate levels of trawling, two which were low/untrawled, and one, ‘Morgue’, which was closed to trawling in 2001, having been heavily trawled up to that point. Still photographs from all surveys were analyzed for the identification and abundance of all visible benthic fauna with effort made to ensure consistency of data among surveys. Because increases in image resolution and quality over time resulted in a persistent trend of increasing abundances, analyses were concentrated on comparisons among seamounts within surveys and how these relationships changed with time. The abundance, species richness, and diversity of benthic communities were higher on low/untrawled seamounts than on those that had been trawled. Multivariate community structure showed similar patterns at each survey point, the low/untrawled seamounts being strongly dissimilar to the persistently trawled seamount, with the others ranged between these extremes, broadly in accordance with their cumulative trawl histories. Community structure on the persistently trawled seamount was less variable than on the other seamounts throughout the study period, possibly because of regular ‘re-setting’ of the community by disturbance from trawling. Although there was some variability in results between whole seamount and summit sector analyses, in general communities on Morgue remained similar to those on the persistently trawled seamount, showing little indication of steps toward recovery to its pre-disturbance state following its closure. These results indicate low resilience of benthic communities on the seamounts to the effects of bottom trawling

    Comparison between infaunal communities of the deep floor and edge of the Tonga Trench: Possible effects of differences in organic matter supply

    Get PDF
    Hadal trenches are characterised by environmental conditions not found in any other environment, thereby providing new opportunities to understand the processes that shape deep-sea benthic cornmunities. Technological advances have led to an increase in the number of investigations in hadal trenches over the last two decades. However, more quantitative samples including the deepest parts of trenches is needed to better understand trends in benthic diversity, abundance, biomass and community structure in these extreme habitats, and how these may be shaped by environmental and/or evolutionary factors. In this study, we describe and compare the abundance, biomass, vertical distribution in the sediment, diversity, and community structure of nematodes and other infauna in sediments from the Horizon Deep (similar to 10 800 m) in the Tonga Trench and a site on the edge of the trench (similar to 6250 m). Mean nematode abundance was six times greater at the Horizon Deep site (387 ind. 10 cm(-2)) than at the trench edge site (65 ind. 10 cm(-2)). A similar pattern was observed for biomass (15 vs 2 mu gDW 10 cm(-2), respectively), which likely resulted from elevated organic matter supply at the Horizon Deep site. There was no significant difference in nematode species richness between the two sites, but diversity measured using rarefaction was significantly greater at the trench edge site than at the Horizon Deep site [ES(20); 13.8 vs 7.8]. Dominance was much more pronounced in the Horizon Deep, which may be due to competitive exclusion by a small number of opportunistic species. Nematode community structure differed significantly both between sites and among sediment depth layers. The presence of subsurface peaks in pigment concentrations, bacteria abundance, and nematode abundance at the Horizon Deep site is consistent with a recent turbidite event, and may also reflect high rates of bioturbation by larger fauna resulting from high food availability. Determining the relative influences of different environmental factors on hadal trench benthic communities will require further investigation based on quantitative samples encompassing the trench axis as well as the oceanic and continental slopes. (C) 2015 Elsevier Ltd. All rights reserved

    A systematic approach towards the identification and protection of vulnerable marine ecosystems

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Marine Policy 49 (2014):146-154, doi:10.1016/j.marpol.2013.11.017.The United Nations General Assembly in 2006 and 2009 adopted resolutions that call for the identification and protection of vulnerable marine ecosystems (VMEs) from significant adverse impacts of bottom fishing. While general criteria have been produced, there are no guidelines or protocols that elaborate on the process from initial identification through to the protection of VMEs. Here, based upon an expert review of existing practices, a 10-step framework is proposed: 1) Comparatively assess potential VME indicator taxa and habitats in a region; 2) determine VME thresholds; 3) consider areas already known for their ecological importance; 4) compile information on the distributions of likely VME taxa and habitats, as well as related environmental data; 5) develop predictive distribution models for VME indicator taxa and habitats; 6) compile known or likely fishing impacts; 7) produce a predicted VME naturalness distribution (areas of low cumulative impacts); 8) identify areas of higher value to user groups; 9) conduct management strategy evaluations to produce trade-off scenarios; 10) review and re-iterate, until spatial management scenarios are developed that fulfil international obligations and regional conservation and management objectives. To date, regional progress has been piecemeal and incremental. The proposed 10-step framework combines these various experiences into a systematic approach.The New Zealand Ministry of Science and Innovation (now known as the Ministry of Business, Innovation and Employment) provided funding for the worksho

    Moving conferences online: lessons learned from an international virtual meeting

    Get PDF
    We consider the opportunities and challenges associated with organizing a conference online, using a case study of a medium-sized (approx. 400 participants) international conference held virtually in August 2020. In addition, we present quantifiable evidence of the participants’ experience using the results from an online post-conference questionnaire. Although the virtual meeting was not able to replicate the in-person experience in some aspects (e.g. less engagement between participants) the overwhelming majority of respondents found the meeting an enjoyable experience and would join similar events again. Notably, there was a strong desire for future inperson meetings to have at least some online component. Online attendance by lower-income researchers was higher compared with a past, similarthemed in-person meeting held in a high-income nation, but comparable to one held in an upper-middle-income nation. This indicates that online conferences are not a panacea for diversity and inclusivity, and that holding in-person meetings in developing economies can be at least as effective. Given that it is now relatively easy to stream contents of meetings online using low-cost methods, there are clear benefits in making all presented content accessible online, as well as organizing online networking events for those unable to attend in person

    Biological responses to disturbance from simulated deep-sea polymetallic nodule mining

    Get PDF
    Commercial-scale mining for polymetallic nodules could have a major impact on the deep-sea environment, but the effects of these mining activities on deep-sea ecosystems are very poorly known. The first commercial test mining for polymetallic nodules was carried out in 1970. Since then a number of small-scale commercial test mining or scientific disturbance studies have been carried out. Here we evaluate changes in faunal densities and diversity of benthic communities measured in response to these 11 simulated or test nodule mining disturbances using meta-analysis techniques. We find that impacts are often severe immediately after mining, with major negative changes in density and diversity of most groups occurring. However, in some cases, the mobile fauna and small-sized fauna experienced less negative impacts over the longer term. At seven sites in the Pacific, multiple surveys assessed recovery in fauna over periods of up to 26 years. Almost all studies show some recovery in faunal density and diversity for meiofauna and mobile megafauna, often within one year. However, very few faunal groups return to baseline or control conditions after two decades. The effects of polymetallic nodule mining are likely to be long term. Our analyses show considerable negative biological effects of seafloor nodule mining, even at the small scale of test mining experiments, although there is variation in sensitivity amongst organisms of different sizes and functional groups, which have important implications for ecosystem responses. Unfortunately, many past studies have limitations that reduce their effectiveness in determining responses. We provide recommendations to improve future mining impact test studies. Further research to assess the effects of test-mining activities will inform ways to improve mining practices and guide effective environmental management of mining activities

    Nitrolinoleate inhibits superoxide generation, degranulation, and integrin expression by human neutrophils: novel antiinflammatory properties of nitric oxide-derived reactive species in vascular cells

    Get PDF
    Nitration of unsaturated fatty acids such as linoleate by NO-derived reactive species forms novel derivatives (including nitrolinoleate [LNO2]) that can stimulate smooth muscle relaxation and block platelet activation by either NO/cGMP or cAMP-dependent mechanisms. Here, LNO2 was observed to inhibit human neutrophil function. LNO2, but not linoleic acid or the nitrated amino acid 3-nitrotyrosine, dose-dependently (0.2 to 1 µmol/L) inhibited superoxide (O2·-) generation, Ca2+ influx, elastase release, and CD11b expression in response to either phorbol 12-myristate 13-acetate or N-formyl-Met-Leu-Phe. LNO2 did not elevate cGMP, and inhibition of guanylate cyclase by 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one did not restore neutrophil responses, ruling out a role for NO. In contrast, LNO2 caused elevations in intracellular cAMP in the presence and absence of phosphodiesterase inhibition, suggesting activation of adenylate cyclase. Compared with phorbol 12-myristate 13-acetate–activated neutrophils, N-formyl-Met-Leu-Phe–activated neutrophils were more susceptible to the inhibitory effects of LNO2, indicating that LNO2 may inhibit signaling both upstream and downstream of protein kinase C. These data suggest novel signaling actions for LNO2 in mediating its potent inhibitory actions. Thus, nitration of lipids by NO-derived reactive species yields products with antiinflammatory properties, revealing a novel mechanism by which NO-derived nitrated biomolecules can influence the progression of vascular disease
    • …
    corecore