113 research outputs found

    Differential var gene expression in the organs of patients dying of falciparum malaria

    Get PDF
    Sequestration of parasitized erythrocytes in the microcirculation of tissues is thought to be important in the pathogenesis of severe falciparum malaria. A major variant surface antigen, var/Plasmodium falciparum erythrocyte membrane protein 1, expressed on the surface of the infected erythrocyte, mediates cytoadherence to vascular endothelium. To address the question of tissue-specific accumulation of variant types, we used the unique resource generated by the clinicopathological study of fatal paediatric malaria in Blantyre, Malawi, to analyse var gene transcription in patients dying with falciparum malaria. Despite up to 102 different var genes being expressed by P. falciparum populations in a single host, only one to two of these genes were expressed at high levels in the brains and hearts of these patients. These major var types differed between organs. However, identical var types were expressed in the brains of multiple patients from a single malaria season. These results provide the first evidence of organ-specific accumulation of P. falciparum variant types and suggest that parasitized erythrocytes can exhibit preferential binding in the body, supporting the hypothesis of cytoadherence-linked pathogenesis

    Human cerebral malaria and Plasmodium falciparum genotypes in Malawi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebral malaria, a severe form of <it>Plasmodium falciparum </it>infection, is an important cause of mortality in sub-Saharan African children. A Taqman 24 Single Nucleotide Polymorphisms (SNP) molecular barcode assay was developed for use in laboratory parasites which estimates genotype number and identifies the predominant genotype.</p> <p>Methods</p> <p>The 24 SNP assay was used to determine predominant genotypes in blood and tissues from autopsy and clinical patients with cerebral malaria.</p> <p>Results</p> <p>Single genotypes were shared between the peripheral blood, the brain, and other tissues of cerebral malaria patients, while malaria-infected patients who died of non-malarial causes had mixed genetic signatures in tissues examined. Children with retinopathy-positive cerebral malaria had significantly less complex infections than those without retinopathy (OR = 3.7, 95% CI [1.51-9.10]).The complexity of infections significantly decreased over the malaria season in retinopathy-positive patients compared to retinopathy-negative patients.</p> <p>Conclusions</p> <p>Cerebral malaria patients harbour a single or small set of predominant parasites; patients with incidental parasitaemia sustain infections involving diverse genotypes. Limited diversity in the peripheral blood of cerebral malaria patients and correlation with tissues supports peripheral blood samples as appropriate for genome-wide association studies of parasite determinants of pathogenicity.</p

    Epistatic Relationships between sarA and agr in Staphylococcus aureus Biofilm Formation

    Get PDF
    Background: The accessory gene regulator (agr) and staphylococcal accessory regulator (sarA) play opposing roles in Staphylococcus aureus biofilm formation. There is mounting evidence to suggest that these opposing roles are therapeutically relevant in that mutation of agr results in increased biofilm formation and decreased antibiotic susceptibility while mutation of sarA has the opposite effect. To the extent that induction of agr or inhibition of sarA could potentially be used to limit biofilm formation, this makes it important to understand the epistatic relationships between these two loci. Methodology/Principal Findings: We generated isogenic sarA and agr mutants in clinical isolates of S. aureus and assessed the relative impact on biofilm formation. Mutation of agr resulted in an increased capacity to forma biofilmin the 8325-4 laboratory strain RN6390 but had little impact in clinical isolates S. aureus. In contrast, mutation of sarA resulted in a reduced capacity to form a biofilm in all clinical isolates irrespective of the functional status of agr. This suggests that the regulatory role of sarA in biofilm formation is independent of the interaction between sarA and agr and that sarA is epistatic to agr in this context. This was confirmed by demonstrating that restoration of sarA function restored the ability to form a biofilm even in the corresponding agr mutants. Mutation of sarA in clinical isolates also resulted in increased production of extracellular proteases and extracellular nucleases, both of which contributed to the biofilm-deficient phenotype of sarA mutants. However, studies comparing different strains with and without proteases inhibitors and/or mutation of the nuclease genes demonstrated that the agr-independent, sarA-mediated repression of extracellular proteases plays a primary role in this regard. Conclusions and Significance: The results we report suggest that inhibitors of sarA-mediated regulation could be used to limit biofilm formation in S. aureus and that the efficacy of such inhibitors would not be limited by spontaneous mutation of agr in the human host

    Latherin: A Surfactant Protein of Horse Sweat and Saliva

    Get PDF
    Horses are unusual in producing protein-rich sweat for thermoregulation, a major component of which is latherin, a highly surface-active, non-glycosylated protein. The amino acid sequence of latherin, determined from cDNA analysis, is highly conserved across four geographically dispersed equid species (horse, zebra, onager, ass), and is similar to a family of proteins only found previously in the oral cavity and associated tissues of mammals. Latherin produces a significant reduction in water surface tension at low concentrations (≤1 mg ml−1), and therefore probably acts as a wetting agent to facilitate evaporative cooling through a waterproofed pelt. Neutron reflection experiments indicate that this detergent-like activity is associated with the formation of a dense protein layer, about 10 Å thick, at the air-water interface. However, biophysical characterization (circular dichroism, differential scanning calorimetry) in solution shows that latherin behaves like a typical globular protein, although with unusual intrinsic fluorescence characteristics, suggesting that significant conformational change or unfolding of the protein is required for assembly of the air-water interfacial layer. RT-PCR screening revealed latherin transcripts in horse skin and salivary gland but in no other tissues. Recombinant latherin produced in bacteria was also found to be the target of IgE antibody from horse-allergic subjects. Equids therefore may have adapted an oral/salivary mucosal protein for two purposes peculiar to their lifestyle, namely their need for rapid and efficient heat dissipation and their specialisation for masticating and processing large quantities of dry food material

    Effects of zilpaterol hydrochloride and zinc methionine on growth performance and carcass characteristics of beef bulls

    Get PDF
    Sixty beef bulls with a body weight (BW) of 314.79 16.2 kg were used to evaluate the effects of zilpaterol hydrochloride (ZH) and zinc methionine (ZM) on growth performance and carcass characteristics. The experimental design was a randomized complete block, with a factorial 22 arrangement of treatments (ZH: 0 and 0.15 mg kg 1 BW; ZM: 0 and 80 mg kg 1 dry matter). The ZH increased (PB0.05) the final BW, average daily gain, feed conversion, carcass yield and longissimus dorsi area. Bulls fed ZH plus ZM had less (PB0.01) backfat thickness and intramuscular fat (IMF) compared with those fed ZH or ZM alone. The ZH increased (PB0.02) the meat crude protein content and cooking loss. It is therefore concluded that ZH increases growth performance, carcass yield, longissimus dorsi area, and meat crude protein. The interaction of ZM and ZH did not present additional advantages. The reason for the reduction in backfat thickness and IMF by ZH plus ZM is unclear, and implies that our knowledge of b-agonistic adrenergic substances and their interactions with minerals is incomplete

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care(1) or hospitalization(2-4) after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease. © 2022, The Author(s)

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical Covid-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalisation2-4 following SARS-CoV-2 infection. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from critically-ill cases with population controls in order to find underlying disease mechanisms. Here, we use whole genome sequencing in 7,491 critically-ill cases compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical Covid-19. We identify 16 new independent associations, including variants within genes involved in interferon signalling (IL10RB, PLSCR1), leucocyte differentiation (BCL11A), and blood type antigen secretor status (FUT2). Using transcriptome-wide association and colocalisation to infer the effect of gene expression on disease severity, we find evidence implicating multiple genes, including reduced expression of a membrane flippase (ATP11A), and increased mucin expression (MUC1), in critical disease. Mendelian randomisation provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5, CD209) and coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of Covid-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication, or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between critically-ill cases and population controls is highly efficient for detection of therapeutically-relevant mechanisms of disease

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1000 cases of unexplained pediatric hepatitis in children have been reported worldwide, including 278 cases in the UK 1. Here we report investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator subjects, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in liver, blood, plasma or stool from 27/28 cases. We found low levels of Adenovirus (HAdV) and Human Herpesvirus 6B (HHV-6B), in 23/31 and 16/23 respectively of the cases tested. In contrast, AAV2 was infrequently detected at low titre in blood or liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T-cells and B-lineage cells. Proteomic comparison of liver tissue from cases and healthy controls, identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and in severe cases HHV-6B, may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
    corecore