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Abstract

To identify predisposition loci for classical Hodgkin Lymphoma (cHL) we conducted a genome-

wide association study of 589 cHL cases and 5,199 controls with validation in 4 independent 

samples totaling 2,057 cases and 3,416 controls. We identified three new susceptibility loci at 

2p16.1 (rs1432295, REL; odds ratio [OR]=1.22, Pcombined=1.91×10−8), 8q24.21 (rs2019960, 

PVT1; OR=1.33, Pcombined=1.26×10−13) and 10p14 (rs501764, GATA3; OR=1.25, 

Pcombined=7.05×10−8). Furthermore, we confirmed the role of the MHC in disease etiology by 

revealing a strong HLA association (rs6903608; OR=1.70, Pcombined=2.84×10−50). These data 

provide new insight into the pathogenesis of cHL.

Classical Hodgkin Lymphoma (cHL) is a lymph node cancer of germinal center B-cell 

origin, characterized by malignant Hodgkin and Reed-Sternberg (HRS) cells mixed with a 

dominant background population of reactive lymphocytes and other inflammatory cells1. 

cHL is one of the most common tumors in young adults in economically developed 

countries, with ~1,500 cases being diagnosed each year in the UK, and the disease accounts 

for ~1 in 3 of all lymphomas2,3. While Epstein-Barr virus (EBV) infection may be causally 

related to a proportion of cases, the etiology of EBV-negative cHL remains largely 

unknown4.
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Evidence for inherited genetic predisposition to cHL is provided by the 3 to 9-fold increased 

risk of cHL in first-degree relatives of cHL patients5. In the light of a possible viral basis to 

cHL it is interesting that cHL was the first disease to be associated with the HLA region6. 

Subsequent studies have reported associations between various HLA class I and class II 

alleles and risk of cHL7,8; specifically an association between the HLA-A*01 and A*02 for 

EBV-positive cHL9,10. Genetic variation in HLA is, however, insufficient to account for the 

observed familial risk of cHL11. To date no non-HLA genetic risk factors have been 

identified and convincingly replicated. Genome-wide linkage studies of cHL families have 

failed to demonstrate an additional major gene locus for cHL12. This coupled with the very 

high concordance of Hodgkin Lymphoma in monozygotic compared with dizygotic twins13 

is consistent with a genetic model of inherited susceptibility based on the co-inheritance of 

multiple low-risk variants.

Predicated on this hypothesis we conducted a genome-wide association study (GWAS) of 

622 UK cHL cases using Illumina 660w Quad BeadChips. Genotype frequencies were 

compared with publicly accessible genotype data generated by the UK Wellcome Trust 

Case-Control Consortium 2 (WTCCC2) study of 2,930 individuals from the 1958 British 

Birth Cohort (58C)14 and 2,737 individuals from the UK Blood Service collections (UKBS), 

that had been genotyped using Illumina Human 1.2M-Duo Custom_v1 Array BeadChips 

(Online Methods). There was no evidence of systematic bias between these two series 

(Online Methods; Supplementary Figure 1), which were combined to provide genotype data 

on 5,667 controls. Data on 521,834 autosomal SNPs common to cases and controls were 

included in this analysis. After stringent quality control filtering (Online Methods; 

Supplementary Table 1), we analyzed 504,374 SNPs in 589 cHL cases and 5,199 controls. 

Principal component analysis (PCA) demonstrated that these cases and controls were 

genetically well matched (Supplementary Figure 2). We therefore assessed the association 

between each SNP and cHL risk using the Cochran-Armitage trend test without PCA 

adjustment. The quantile-quantile (Q-Q) plots of the negative logarithm of genome-wide P-

values showed a strong deviation from the null distribution (Supplementary Figure 1), which 

could be ascribed to the strong association observed within the MHC region. After 

excluding 1,700 SNPs mapping to the major histocompatibility (MHC) region (6p21: 

28-33Mb) there was only minimal inflation of test statistics, except at the upper tail of the 

distribution (P<10−4), thereby rendering cryptic population substructure or differential 

genotype calling between cases and controls unlikely (genomic control inflation factor15, 

λgc=1.04; Supplementary Figure 1). Using principal components analyses as implemented in 

Eigenstrat16, correction for possible population substructure had no influence on findings for 

subsequently validated loci (Table 1). Furthermore, evidence for loci influencing cHL risk 

was provided by independent comparison with both 58C and UKBS control series 

(Supplementary Table 2).

This GWAS revealed multiple associations at chromosome 6, as well as suggestive 

associations on chromosomes 2, 5, 7, 8, 9, 10, 11 and 19 (Figure 1). To validate these 

associations we genotyped the HLA class II SNP rs6903608 and 10 SNPs from other 

regions showing an association, in the UK replication series (524 cases, 1,533 controls) 

(Online Methods, Supplementary Table 1). In the combined analysis, associations for 6 of 
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the SNPs were significant at Pcombined<1.0×10−4 (Supplementary Table 3). These 6 SNPs 

were successfully genotyped in 3 independent case-control replication series (Online 

Methods, Supplementary Table 1) - SCALE (482 cases, 590 controls), Germany (498 cases, 

655 controls) and Netherlands (553 cases, 638 controls). Combined analysis of all case-

control series revealed genome-wide associations (i.e., P<5.0×10−7)17 at 2p16.1, 6p21, 

8q24.21 and 10p14 (Table 1; Supplementary Table 3).

In our GWAS, 42 SNPs mapping to the 4.8Mb interval at 6p21, bordered by the TRIM27 

and MLN genes (rs209130, 28,975,779bps and rs1547668, 33,883,424bps respectively) 

defining the classical MHC region, showed evidence of an association with cHL risk at 

P<5.0×10−7 (Supplementary Figure 3). The most significant associations were with SNPs 

mapping to HLA class II; the strongest signal was attained at rs6903608 centromeric to 

HLA-DRA (P=8.12×10−21, 32,536,263bps; Supplementary Figure 3). The association 

between rs6903608 was consistently seen in each of the replication series, Pcombined=2.84 

×10−50 (Table 1, Supplementary Table 3).

The association with rs1432295 (Pcombined=1.91×10−8, OR=1.22) on 2p16.1 

(60,920,170bps) straddles a recombination hotspot between 2 regions of high linkage 

disequilibrium (LD) (Figure 2; Supplementary Figure 4). The 137Kb region defined by these 

two LD blocks encompasses the putative transcript FLJ16341 and REL (avian 

reticuloendotheliosis viral oncogene homolog). REL encodes c-Rel, a member of the Rel/

NFκB family of transcription factors. Constitutive activity of NFκB transcription factors is a 

hallmark of cHL1 and inactivating somatic mutations of the NFκB signaling inhibitors play 

a major role in cHL pathogenesis18-20. Furthermore, studies have shown genomic 

amplifications of REL associated with increased c-Rel expression in cHL 21-23.

We identified 2 SNPs on 8q24.21 associated with cHL risk, rs2019960 

(Pcombined=1.26×10−13, OR=1.33) and rs2608053 (Pcombined=1.16×10−7, OR=1.20). 

rs2608053 mapping at 129,145,014bps localizes to a 56Kb region of LD that encompasses 

intron 6 of PVT1 (Figure 2, Supplementary Figure 4). rs2019960 mapping at 

129,261,453bps localizes to a 82Kb region of LD telomeric to PVT1 (Figure 2, 

Supplementary Figure 4). The effects of rs2019960 and rs2608053 on cHL risk are 

maintained when adjusted for each other by logistic regression (OR=1.33, 95% CI:

1.23-1.44, P=1.97×10−13; and OR=1.20, 95% CI:1.12-1.28, P=1.37×10−7, respectively). 

Furthermore, correlation between rs2019960 and rs2608053 is poor (r2=0.0, D′=0.01 in 

HapMap CEU samples, r2=0.0, D′=0.03 in our control data) and comparison of haplotype 

frequencies provided evidence of two haplotypes differing in frequency between cases and 

controls (Supplementary Table 4). Because rs2019960 or rs2608053 alone cannot fully 

account for the association between 8q24.21 and cHL, it is possible that a unique variant in 

LD with and capturing the effects of both SNPs may exist. We did not, however, identify a 

more significant association in LD with both SNPs through imputation, making it plausible 

that two independent signals exist at 8q24.21.

PVT1 is frequently involved in translocations occurring in variant Burkitt’s lymphoma and 

murine plasmacytomas24. The PVT1 locus encodes several microRNAs thought to be as 

important as MYC in T-lymphomagenesis and T-cell activation25. Co-activation of c-Myc 
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and PVT1 has been shown in a variety of human and animal tumors26-28. The 128-130Mb 

genomic interval at 8q24.21 harbors multiple independent loci with different tumor 

specificities, including chronic lymphocytic leukemia (rs2456449; 128,262,163bps)29, 

prostate (rs16901979; 128,194,098bps)30, breast (rs13281615; 128,424,800bps)31, 

colorectal and prostate (rs6983267; 128,482,487bps)32,33, prostate (rs1447295; 

128,554,220bps)34 and bladder (rs9642880; 128,787,250bps)35 cancer. The LD blocks 

defining these loci are distinct from the 8q24.21 cHL association signal (r2<0.03; 

Supplementary Table 5). The colorectal cancer SNP rs6983267 shows differential binding of 

TCF4 to an enhancer element that physically interacts with the MYC promoter 36,37. A 

similar allele-specific cis-effect either on MYC or through PVT1 impacting on MYC 

expression provides an attractive mechanistic basis for the 8q24.21 association with cHL 

risk. If the 8q24.21 locus influences risk through differential MYC expression, the 

association is intriguing since c-Myc and Rel/NFκB are the two master transcriptional 

systems activated in the latency III program of EBV-immortalized B-cells, which are 

responsible for the phenotype, growth pattern, and biological properties of cells driven into 

proliferation by EBV38.

The two SNPs showing an association with cHL mapping to 10p14, rs501764 

(Pcombined=7.05×10−8, OR=1.25) and rs485411 (Pcombined=1.29×10−7, OR=1.22) are in 

strong LD (r2=0.71, D′= 0.95 in HapMap CEU samples, r2=0.69, D′=1.00 in our control 

data) and map to a 40Kb region of LD encompassing the transcription factor and putative 

tumor suppressor gene, GATA3 (GATA binding protein 3 isoform 2) (Figure 2, 

Supplementary Figure 4). The expression of GATA3 is important in hematopoeitic and 

lymphoid-cell development, acting as a master transcription factor for differentiation of Th2 

cells39. A high proportion of the reactive infiltrate in cHL tumors is composed of Th2-like 

cells with Treg phenotype which can influence EBV-positive cHL cell growth, depending on 

EBV antigenic presentation by MHC molecules40. Notably, a key characteristic of HRS 

cells is the production of cytokines and chemokines driven by GATA3 expression and other 

T-cell transcription factors 41. Evidence for a biological relationship between the 2p16.1, 

8q24.21 and 10p14 loci is that members of the Rel-family have differential effects on the 

MYC promoter42 and GATA3 is a target for c-Myc43.

Elucidation of the basis of each of the associations at 2p16.1, 8q24.21 and 10p14 will 

require fine-mapping and functional analyses. To examine if any directly typed or imputed 

SNPs annotate a putative transcription factor (TF) binding/enhancer element, we conducted 

a bioinformatic search of each of the regions of association using Transfac Matrix Database, 

PReMod and EEL software. At 10p14 an imputed SNP rs369421 provides the best evidence 

for the association signal (P=6.20×10−7) mapping within module 011553 (Supplementary 

Table 6, Supplementary Figure 4). Intriguingly, this module includes binding sites for 

ARID5B and E2F TFs. ARID5B has been previously implicated in development of acute 

leukemia44, and loss of PU.1, an E2F TF, has been associated with defective 

immunoglobulin expression in HRS cells45.

A hallmark of cHL epidemiology is the bimodal age specific incidence and it has been 

argued that the disease in young adults and older adults are etiologically different; in 

particular there is a low prevalence of EBV in younger cHL patients46. We assessed the 
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relationship between cHL and EBV-status, age and sex at the 6p21, 2p16.1, 8q24.21 and 

10p14 loci (defined by rs6903608, rs1432295, rs2019960, rs2608053, and rs501764 

genotypes) by case-only analysis using data from SCALE, UK and Netherlands replication 

series (1,100 cases; Supplementary Table 7). Associations at all loci were not influenced by 

sex after adjustment for age and EBV-status. The rs501764 association with cHL was not 

related to age or EBV-status (Supplementary Table 7). The HLA class II association at 6p21 

was primarily driven by EBV-negative cHL after adjustment for age and sex 

(Padjusted=1.63×10−11). Similarly, rs1432295 (2p16.1) risk alleles were significantly 

enriched in EBV-negative cHL (Padjusted=0.01). At 8q24.21, while rs2608053 was 

associated with EBV-negative cHL (Padjusted=0.01), rs2019960 showed a relationship with 

early-onset cHL, independent of EBV-status or sex (Padjusted=0.002) (Supplementary Table 

7). These phenotypic differences provide further support for two independent cHL risk loci 

at 8q24.21.

To explore whether any of the associations at 2p16.1, 8q24.21 and 10p14 reflect cis-acting 

regulatory effects on a nearby gene we searched for genotype-expression correlations in 90 

EBV-transformed lymphoblastoid cell lines using previously described data47,48. We did not 

find any significant relationship between SNP genotype and gene expression, after 

adjustment for multiple testing (Supplementary Figure 5). This does not preclude the 

possibility that the causal variants at these disease loci have subtle effects on expression as 

the dynamic range of transcripts, such as MYC, is small. Furthermore, it is likely that only a 

cumulative long-term imbalance in expression in target genes will influence cHL 

development and expression differences may only be relevant to a specific subpopulation of 

B-cells, which may not be well modelled by EBV-transformed lymphocytes.

While the HLA association with cHL is a very strong genetic effect, the identification of risk 

variants at 2p16.1, 8q24.21 and 10q14 implicates important roles for networks involving 

MYC, GATA3 and the NFκB pathway in cHL disease etiology. In the combined dataset there 

was some evidence for interactions between HLA (rs6903608) and 2p16.1 (rs1432295; 

P=0.05) and between 8q24.21 (rs2608053) and 10p14 (rs501764 and rs485411; P=0.01), 

albeit non-significant after correction for multiple testing (Supplementary Table 8). Further 

studies are needed to investigate possible interactions between these susceptibility loci and 

their interplay with EBV infection. Finally, the modest size of our study makes it likely that 

further risk variants for cHL can be identified through additional studies.

ONLINE METHODS

Patients and samples

Genome-wide association study—We analyzed constitutional DNA of 622 cHL 

patients (International Classification of Diseases [ICD] 10 codes C81.0-3) ascertained 

through the Royal Marsden Hospitals NHS Trust Family History study, during 2004-2008 

(n=104, 63 male; mean age of diagnosis [AOD]=38, SD=16) and an ongoing national study 

of cHL in females (n=518, mean AOD=23, SD=6) conducted by the Institute of Cancer 

Research (ICR). 146 cases had been diagnosed with breast cancer subsequent to cHL 

diagnosis. All cases British residents and self-reported to be of European Ancestry.
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For controls we used publicly accessible data generated by the UK Wellcome Trust Case-

Control Consortium 2 (WTCCC2) study on 5,667 individuals from two sources: 2,930 

individuals from the British 1958 Birth Cohort (58C; also known as the National Child 

Development Study) which includes all births in England, Wales and Scotland14; and 2,737 

UK Blood Services Controls (UKBS) aged 18-69, sex- and geographically matched to 

reproduce the distribution of samples within 58C.

Replication series—The UK-replication series comprised 524 cHL cases (ICD10 

C81.0-3; 290 male, mean AOD=38, SD=16) ascertained from the Scotland and Newcastle 

Epidemiological Study of Hodgkin Disease (SNEHD), the Young adult Hodgkin Case-

Control Study (YHCCS) and the Epidemiology & Genetics Lymphoma Case-Control Study 

(ELCCS; www.elccs.info). Full details of SNEHD, YHCCS and ELCCS studies provided 

previously49-51. Briefly, SNEHD involved ascertainment of incident cases from Scotland 

and Northern England during 1993-1997. YHCCS was based on newly diagnosed patients 

aged 16-24 from Northern England during 1991-1995. ELCCS comprised patients residing 

in the north of England aged 16-69, with newly diagnosed, non-HIV-related HL, during 

1998-2003. UK population controls obtained from SNEHD and YHCCS (n=495, 268 male, 

mean age 41, SD=17) and ongoing epidemiological studies of cancer conducted at the ICR 

(n=1,038, 524 male, mean age 60, SD=9)52.

The Scandinavian Lymphoma Etiology (SCALE) study has been described previously53,54. 

Briefly, SCALE is a population-based case-control study of HL and non-Hodgkin 

lymphomas conducted in Denmark and Sweden during 1999-2002. The study population 

encompassed Danish and Swedish speaking residents aged 18-74 with no history of HIV 

infection, solid organ transplantation or previous hematopoietic malignancy in Denmark 

from June 1, 2000 to August 30, 2002, and in Sweden from October 1, 1999, to April 15, 

2002. Participants recruited in a Danish regional pilot phase starting November 1, 1999, 

were also included, as were prevalent cases of HL diagnosed since January 1, 1999 in both 

countries. In total, 586 patients diagnosed with cHL according to the WHO classification in 

the study period and 3,187 controls representing 91% and 71% of eligible cases and 

controls, respectively, participated in the study, which included telephone interview and 

blood sampling. For the present investigation, DNA from 482 cases (82% of all SCALE 

cHL cases, 282 male, mean AOD=40, SD=16) and from 255 Danish controls was extracted 

from dried filter paper blood spots with Extract-N-AmpT as per manufacturer’s instructions 

(Sigma-Aldrich, St. Louis, MO, USA) and subjected to whole genome amplification with 

AmpliQ Genomic Amplifier Kit (Ampliqon, Denmark)55. In addition, germline DNA 

extracted from buffy coat for 335 Danish SCALE controls (randomly selected from 590 

controls) was also included. (Mean age for combined SCALE controls 59, SD=13).

The Netherlands replication series comprised: (i) 281 cHL patients (149 male, mean 

AOD=36, SD=15) collected from the north of the Netherlands diagnosed during 1997-2000 

as part of an ascertainment by the University Medical Centre Groningen; (ii) 272 cHL cases, 

97 diagnosed with breast cancer subsequent to cHL (mean AOD=24, SD=6). These patients 

were selected in the framework of an ongoing case-control study of risk factors for breast 

cancer after HL conducted by the Netherlands Cancer Institute, Amsterdam, within a larger 

cohort study of women treated for cHL before age 60, during 1965-1995 and who survived 
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at least 5 years. Patient selection, methods of data/blood collection and DNA isolation 

described previously56-58. Samples from healthy blood donors, aged 19-69, ascertained 

through medical centers in Groningen (mean age=52, SD=11) and Leiden (mean age=47, 

SD=12), served as controls.

The German replication series comprised 498 cHL patients ascertained by the German 

Hodgkin Study Group during 1998-2007 (292 male, mean AOD=34, SD=12). Controls were 

655 healthy blood donors from Mannheim, located 200km from Cologne (381 male, mean 

age=36, SD=13).

EBV status of tumors—EBV status of cHL tumors was determined by 

immunohistochemical staining for EBV latent membrane antigen (LMP)-1 and/or EBV 

EBER in situ hybridization using sections of paraffin-embedded material53,59.

Ethics—Collection of blood samples and clinico-pathological information from subjects 

was undertaken with informed consent and relevant ethical review board approval in 

accordance with the tenets of the Declaration of Helsinki.

Genotyping—DNA extracted from samples using conventional methodologies and 

quantified using PicoGreen (Invitrogen, Carlsbad, USA).

Genotyping of cHL cases in the GWAS conducted using Illumina Infinium HD Human660-

Quad BeadChips according to manufacturer’s protocols (Illumina, San Diego, USA). DNA 

samples with GenCall scores<0.25 at any locus considered “no-calls”. A SNP was 

considered failed if fewer <95% of DNA samples generated a genotype at the locus. Cluster 

plots manually inspected for all SNPs considered for replication.

We used data on controls from the 1958 Birth Cohort (58C) and National Blood Service 

(UKBS) which had been generated by the WTCCC. Genotyping of both sets of controls was 

conducted using Illumina Human 1.2M-Duo Custom_v1 Array chips. SNP calling 

performed using Illuminus Software. Full details of genotyping, SNP calling and QC 

reported previously (www.wtccc.org.uk). Concordant with previous findings17 comparison 

of the two control series showed little evidence for systematic bias (inflation factor λ=1.022; 

Supplementary Figure 1).

Validation and replication of associations were performed using competitive allele-specific 

PCR KASPar chemistry (KBiosciences Ltd, Hertfordshire, UK). Primers and probes used 

available on request. Samples having SNP call rates <90% excluded from analysis. To 

ensure quality of genotyping in all assays, at least two negative controls and 1-2% duplicates 

(showing a concordance >99.99%) were genotyped. We performed cross-platform validation 

and sequenced a random series of 96 samples to exclude technical artifact confirm 

genotyping accuracy (concordance>99.9%).

Statistical and bioinformatic analysis—We applied pre-determined quality-control 

metrics to the GWAS data. We restricted analyses to samples for whom >95% of SNPs were 

successfully genotyped, eliminating 12 cases. We computed identity-by-state (IBS) 

probabilities for all pairs to search for duplicates and closely related individuals amongst 
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cases and controls (defined as IBS ≥0.80, thereby excluding first-degree relatives). For all 

identical pairs the sample with highest call rate was retained, eliminating 2 cases. To 

identify individuals with possible non-Western European ancestry, we merged our case and 

control data with HapMapII samples (60 western European [CEU], 60 Nigerian [YRI], 90 

Japanese [JPT] and 90 Han Chinese [CHB]). For each pair of individuals we calculated 

genome-wide IBS distances on markers shared between HapMap and our SNP panel, used 

as dissimilarity measures upon which to perform principal component analysis. The first two 

principal components for each individual were plotted; any individual not present in the 

main CEU cluster (i.e. 5% furthest from cluster centroids) was excluded. We removed 30 

cases with non-CEU ancestry (some of which had poor call rates) and 1 WTCCC2 control 

which was a duplicate case. We excluded SNPs with minor allele frequency <1%, and call 

rate <95% (cases or controls) and those showing departure from Hardy-Weinberg 

equilibrium (P<10−5) in controls. For replication and validation analysis call rates were 

>95% per 384-well plate for each SNP; cluster plots visually examined by two researchers.

Main analyses were undertaken using R(v2.6), Stata10 (State College, Texas, US) and 

PLINK(v1.06). Association between each SNP and cHL risk was assessed by the Cochran-

Armitage trend test. The adequacy of case-control matching and possibility of differential 

genotyping of cases and controls were formally evaluated using quantile-quantile (Q-Q) 

plots of test statistics. The inflation factor λ was based on the 90% least significant SNPs15. 

We adjusted for possible population substructure using Eigenstrat software16. Odds ratios 

(ORs) and associated 95% confidence intervals (CIs) were calculated by unconditional 

logistic regression. Meta-analysis was conducted using standard methods60. Cochran’s Q 

statistic and I2 statistic were calculated to test for heterogeneity and quantify total variation 

due to heterogeneity; large heterogeneity typically defined as I2≥75%61. We conducted a 

pooled analysis incorporating Eigenstrat-adjusted P-values from the GWAS using the 

weighted Z-method implemented in the program METAL. We examined each SNP for dose 

response by comparing 1-d.f. and 2-d.f. logistic regression models, adjusting for stage using 

a likelihood ratio test, and examined the combined effects of multiple SNPs by evaluating 

the effect of adding an interaction term on the model by using a likelihood ratio test and 

adjusting for stage. Associations by sex, age and EBV-status were examined by logistic 

regression in case-only analyses.

Prediction of the untyped SNPs was carried out using IMPUTEv2, based on HapMapIII/

Release27 (Feb2009, NCBI B36, dbSNP26) and 1000genomes. Imputed data were analysed 

using SNPTESTv2 to account for uncertainties in SNP prediction. LD-metrics between 

HapMap SNPs were based on HapMapIII/Release27, viewed using Haploview(v4.2) and 

plotted using SNAP. LD-blocks defined on the basis of HapMap recombination rate 

(cM/Mb) as defined using Oxford recombination hotspots62 and on the basis of distribution 

of confidence intervals defined by Gabriel et al. 63

To annotate potential regulatory sequences within disease loci we implemented in silico 

searches using Transfac Database(v7.29)64, PReMod1065 and EEL66.

Relationship between SNP genotypes and expression levels—To examine for a 

relationship between SNP genotype and expression levels of GATA3, REL, and MYC in 
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lymphocytes we made use of publicly available expression data generated from analysis of 

90 Caucasian derived Epstein-Barr virus–transformed lymphoblastoid cell lines using 

Sentrix Human-6 Expression BeadChips (Illumina, San Diego, USA)47,48. Online recovery 

of data performed using WGAViewer(v1.25). Differences in distribution of mRNA 

expression levels between SNP genotypes were compared using a Wilcoxon-type trend 

test67.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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dbSNP: http://www.ncbi.nlm.nih.gov/projects/SNP/

HapMap: http://www.hapmap.org/
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Figure 1. Genome-wide association results from the initial GWAS
Shown are the genome-wide P-values obtained using the Cochran-Armitage trend test from 

504,374 autosomal SNPs in 589 HL cases and 5,199 controls. P-values (-log10P, y axis) are 

plotted against their respective chromosomal positions (x axis). Each chromosome is 

depicted in a different color. The points with P<10−10 were truncated; the smallest P value is 

8.12 ×10−21.
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Figure 2. Regional plots of association results and recombination rates for 2p16.1, 8q24.21, and 
10p14 susceptibility loci
(a-c) Association results of both genotyped (triangles) and imputed (circles) SNPs in the 

GWAS samples and recombination rates within the three loci: (a) 2p16.1; (b) 8q24.21; (c) 

10p14. For each plot, −log10P values (y-axis) of the SNPs are shown according to their 

chromosomal positions (x-axis). The top genotyped SNP in the combined analysis is labeled 

by rs ID. The color intensity of each symbol reflects the extent of LD with the top genotyped 

SNP – red/blue (r2>0.8) through to white (r2<0.2). Genetic recombination rates (cM/Mb), 

estimated using HapMap CEU samples, are shown with a light blue line. Physical positions 

are based on build 36 (NCBI) of the human genome. Also shown are the relative positions of 

genes and transcripts mapping to each region of association. Genes and miRNAs have been 

redrawn to show the relative positions; therefore, maps are not to physical scale.
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