1,692 research outputs found

    Assessing Domain Specificity in the Measurement of Mathematics Calculation Anxiety

    Get PDF
    An online, cross-sectional approach was taken, including an opportunity sample of 160 undergraduate students from a university in the Midlands, UK. Exploratory factor analysis indicated a parsimonious, four-factor solution: abstract maths anxiety, statistics probability anxiety, statistics calculation anxiety, and numerical calculation anxiety. The results support previous evidence for the existence of a separate “numerical anxiety” or “arithmetic computation” anxiety component of maths anxiety and also support the existence of anxiety that is specific to more abstract maths. This is the first study to consider the multidimensionality of maths anxiety at the level of the calculation type. The 26-item Maths Calculation Anxiety Scale appears to be a useful measurement tool in the context of maths calculation specifically.N/

    European Quality in Preclinical Data (EQIPD):Een breed consortium voor het verbeteren van de kwaliteit van proefdieronderzoek

    Get PDF
    Het merendeel van de dierstudies, zowel in de industrie als in de academische wereld, wordt uitgevoerd ten behoeve van de menselijke gezondheid: we gebruiken ze als voorspeller voor effecten in mensen, bijvoorbeeld bij de ontwikkeling van nieuwe geneesmiddelen of medische interventies, in de toxicologie, en ook in fundamenteel onderzoek

    JTEC panel on display technologies in Japan

    Get PDF
    This report is one in a series of reports that describes research and development efforts in Japan in the area of display technologies. The following are included in this report: flat panel displays (technical findings, liquid crystal display development and production, large flat panel displays (FPD's), electroluminescent displays and plasma panels, infrastructure in Japan's FPD industry, market and projected sales, and new a-Si active matrix liquid crystal display (AMLCD) factory); materials for flat panel displays (liquid crystal materials, and light-emissive display materials); manufacturing and infrastructure of active matrix liquid crystal displays (manufacturing logistics and equipment); passive matrix liquid crystal displays (LCD basics, twisted nematics LCD's, supertwisted nematic LCD's, ferroelectric LCD's, and a comparison of passive matrix LCD technology); active matrix technology (basic active matrix technology, investment environment, amorphous silicon, polysilicon, and commercial products and prototypes); and projection displays (comparison of Japanese and U.S. display research, and technical evaluation of work)

    First detection of water vapor in a pre-stellar core

    Get PDF
    Water is a crucial molecule in molecular astrophysics as it controls much of the gas/grain chemistry, including the formation and evolution of more complex organic molecules in ices. Pre-stellar cores provide the original reservoir of material from which future planetary systems are built, but few observational constraints exist on the formation of water and its partitioning between gas and ice in the densest cores. Thanks to the high sensitivity of the Herschel Space Observatory, we report on the first detection of water vapor at high spectral resolution toward a dense cloud on the verge of star formation, the pre-stellar core L1544. The line shows an inverse P-Cygni profile, characteristic of gravitational contraction. To reproduce the observations, water vapor has to be present in the cold and dense central few thousand AU of L1544, where species heavier than Helium are expected to freeze-out onto dust grains, and the ortho:para H2 ratio has to be around 1:1 or larger. The observed amount of water vapor within the core (about 1.5x10^{-6} Msun) can be maintained by Far-UV photons locally produced by the impact of galactic cosmic rays with H2 molecules. Such FUV photons irradiate the icy mantles, liberating water wapor in the core center. Our Herschel data, combined with radiative transfer and chemical/dynamical models, shed light on the interplay between gas and solids in dense interstellar clouds and provide the first measurement of the water vapor abundance profile across the parent cloud of a future solar-type star and its potential planetary system.Comment: The Astrophysical Journal Letters, in pres

    Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    Get PDF
    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 10(exp 13) to 10(exp 15) n per square centimeters. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 10(exp 15) to 10(exp 16) n per square centimeters with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions

    Risk of bias reporting in the recent animal focal cerebral ischaemia literature

    Get PDF
    BACKGROUND: Findings from in vivo research may be less reliable where studies do not report measures to reduce risks of bias. The experimental stroke community has been at the forefront of implementing changes to improve reporting, but it is not known whether these efforts are associated with continuous improvements. Our aims here were firstly to validate an automated tool to assess risks of bias in published works, and secondly to assess the reporting of measures taken to reduce the risk of bias within recent literature for two experimental models of stroke. METHODS: We developed and used text analytic approaches to automatically ascertain reporting of measures to reduce risk of bias from full-text articles describing animal experiments inducing middle cerebral artery occlusion (MCAO) or modelling lacunar stroke. RESULTS: Compared with previous assessments, there were improvements in the reporting of measures taken to reduce risks of bias in the MCAO literature but not in the lacunar stroke literature. Accuracy of automated annotation of risk of bias in the MCAO literature was 86% (randomization), 94% (blinding) and 100% (sample size calculation); and in the lacunar stroke literature accuracy was 67% (randomization), 91% (blinding) and 96% (sample size calculation). DISCUSSION: There remains substantial opportunity for improvement in the reporting of animal research modelling stroke, particularly in the lacunar stroke literature. Further, automated tools perform sufficiently well to identify whether studies report blinded assessment of outcome, but improvements are required in the tools to ascertain whether randomization and a sample size calculation were reported

    Implications of Electronics Constraints for Solid-State Quantum Error Correction and Quantum Circuit Failure Probability

    Full text link
    In this paper we present the impact of classical electronics constraints on a solid-state quantum dot logical qubit architecture. Constraints due to routing density, bandwidth allocation, signal timing, and thermally aware placement of classical supporting electronics significantly affect the quantum error correction circuit's error rate. We analyze one level of a quantum error correction circuit using nine data qubits in a Bacon-Shor code configured as a quantum memory. A hypothetical silicon double quantum dot quantum bit (qubit) is used as the fundamental element. A pessimistic estimate of the error probability of the quantum circuit is calculated using the total number of gates and idle time using a provably optimal schedule for the circuit operations obtained with an integer program methodology. The micro-architecture analysis provides insight about the different ways the electronics impact the circuit performance (e.g., extra idle time in the schedule), which can significantly limit the ultimate performance of any quantum circuit and therefore is a critical foundation for any future larger scale architecture analysis.Comment: 10 pages, 7 figures, 3 table
    corecore