38 research outputs found

    Modifications of the endosomal compartment in peripheral blood mononuclear cells and fibroblasts from Alzheimer’s disease patients

    Get PDF
    International audienceIdentification of blood-based biomarkers of Alzheimer’s disease (AD) remains a challenge. Neuropathological studies have identified enlarged endosomes in post-mortem brains as the earliest cellular change associated to AD. Here the presence of enlarged endosomes was investigated in peripheral blood mononuclear cells from 48 biologically defined AD patients (25 with mild cognitive impairment and 23 with dementia (AD-D)), and 23 age-matched healthy controls using immunocytochemistry and confocal microscopy. The volume and number of endosomes were not significantly different between AD and controls. However, the percentage of cells containing enlarged endosomes was significantly higher in the AD-D group as compared with controls. Furthermore, endosomal volumes significantly correlated to [C11]PiB cortical index measured by positron emission tomography in the AD group, independently of the APOE genotype, but not to the levels of amyloid-beta, tau and phosphorylated tau measured in the cerebrospinal fluid. Importantly, we confirmed the presence of enlarged endosomes in fibroblasts from six unrelated AD-D patients as compared with five cognitively normal controls. This study is the first, to our knowledge, to report morphological alterations of the endosomal compartment in peripheral cells from AD patients correlated to amyloid load that will now be evaluated as a possible biomarker

    Identification of Novel Functional Inhibitors of Acid Sphingomyelinase

    Get PDF
    We describe a hitherto unknown feature for 27 small drug-like molecules, namely functional inhibition of acid sphingomyelinase (ASM). These entities named FIASMAs (Functional Inhibitors of Acid SphingoMyelinAse), therefore, can be potentially used to treat diseases associated with enhanced activity of ASM, such as Alzheimer's disease, major depression, radiation- and chemotherapy-induced apoptosis and endotoxic shock syndrome. Residual activity of ASM measured in the presence of 10 µM drug concentration shows a bimodal distribution; thus the tested drugs can be classified into two groups with lower and higher inhibitory activity. All FIASMAs share distinct physicochemical properties in showing lipophilic and weakly basic properties. Hierarchical clustering of Tanimoto coefficients revealed that FIASMAs occur among drugs of various chemical scaffolds. Moreover, FIASMAs more frequently violate Lipinski's Rule-of-Five than compounds without effect on ASM. Inhibition of ASM appears to be associated with good permeability across the blood-brain barrier. In the present investigation, we developed a novel structure-property-activity relationship by using a random forest-based binary classification learner. Virtual screening revealed that only six out of 768 (0.78%) compounds of natural products functionally inhibit ASM, whereas this inhibitory activity occurs in 135 out of 2028 (6.66%) drugs licensed for medical use in humans

    Diagnosis associated with Tau higher than 1200 pg/mL: Insights from the clinical and laboratory practice

    No full text
    International audienceContext: Cerebrospinal fluid (CSF) biomarkers are valuable tools for the diagnosis of neurological diseases. We aimed to investigate within a retrospective multicentric study the final diagnosis associated with very high CSF Tau levels and to identify patterns of biomarkers that would differentiate them in clinical practice, to help clinical biologists into physicians' counseling.Patients and methods: Within the national multicentric network ePLM, we included 1743 patients from January 1, 2008, to December 31, 2013, with CSF biomarkers assayed by the same Innotest assays (protein Tau, phospho-Tau [pTau], and Aβ 1-42). We identified 205 patients with protein Tau concentration higher than 1200 pg/mL and final diagnosis.Results: Among those patients, 105 (51.2%) were suffering from Alzheimer's disease, 37 (18%) from sporadic Creuztfeldt-Jakob disease, and 63 (30.7%) from other neurological diseases including paraneoplastic/ central nervous system tumor, frontotemporal dementia, other diagnoses, amyloid angiopathy, Lewy body dementia, and infections of the central nervous system. Phospho-Tau, Aβ1-42 and Aβ1-42/pTau values differed significantly between the three groups of patients (p 60 pg/mL.Conclusion: This work emphasizes the interest of a well-thought-out interpretation of CSF biomarkers in neurological diseases, particularly in the case of high Tau protein concentrations in the CSF

    Interleukin-6 mediated upregulation of CYP1B1 and CYP2E1 in colorectal cancer involves DNA methylation, miR27b and STAT3.

    Get PDF
    BACKGROUND: The pro-inflammatory cytokine interleukin-6 (IL6) promotes colorectal cancer (CRC) development. It is also known to regulate cytochrome P450 (CYP450) enzymes, which are involved in CRC tumour initiation and promotion via activation of chemical carcinogens. Here, IL6 regulation of CYP450 expression was investigated in CRC. METHODS: The effect of IL6 on CYP 1A1, 1B1 and 2E1 expression was determined in vitro using CRC cell lines HCT116 and SW480, and CYP450 expression was determined by immunohistochemistry in CRC tissues previously shown to have increased levels of IL6. RESULTS: In mechanistic studies, IL6 treatment significantly induced CYP1B1 and CYP2E1, but not CYP1A1, gene expression in HCT116 and SW480 cells. CYP2E1 expression regulation occurred via a transcriptional mechanism involving STAT3. For CYP1B1 regulation, IL6 downregulated the CYP1B1-targeting microRNA miR27b through a mechanism involving DNA methylation. In clinical samples, the expression of CYP1B1 and CYP2E1, but not CYP1A1, was significantly increased in malignant tissue overexpressing IL6 compared with matched adjacent normal tissue. CONCLUSIONS: Colonic inflammation with the presence of IL6 associated with neoplastic tissue can alter metabolic competency of epithelial cells by manipulating CYP2E1 and CYP1B1 expression through transcriptional and epigenetic mechanisms. This can lead to increased activation of dietary carcinogens and DNA damage, thus promoting colorectal carcinogenesis
    corecore