18 research outputs found
Population genomics provide insights into the global genetic structure of Colletotrichum graminicola, the causal agent of maize anthracnose
Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. We investigated the genetic diversity and reproductive biology of Colletotrichum graminicola isolates which infect maize by sequencing the genomes of 108 isolates collected from 14 countries using restriction site-associated DNA sequencing (RAD-seq) and whole-genome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms revealed three genetic groups delimited by continental origin, compatible with short-dispersal of the pathogen and geographic subdivision. Intra- and intercontinental migration was observed between Europe and South America, likely associated with the movement of contaminated germplasm. Low clonality, evidence of genetic recombination, and high phenotypic diversity were detected. We show evidence that, although it is rare (possibly due to losses of sexual reproduction- and meiosis-associated genes) C. graminicola can undergo sexual recombination. Our results support the hypotheses that intra- and intercontinental pathogen migration and genetic recombination have great impacts on the C. graminicola population structure
Population Genomics Provide Insights into the Global Genetic Structure of \u3ci\u3eColletotrichum graminicola\u3c/i\u3e, the Causal Agent of Maize Anthracnose
Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. We investigated the genetic diversity and reproductive biology of Colletotrichum graminicola isolates which infect maize by sequencing the genomes of 108 isolates collected from 14 countries using restriction site-associated DNA sequencing (RAD-seq) and wholegenome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms revealed three genetic groups delimited by continental origin, compatible with short-dispersal of the pathogen and geographic subdivision. Intra- and intercontinental migration was observed between Europe and South America, likely associated with the movement of contaminated germplasm. Low clonality, evidence of genetic recombination, and high phenotypic diversity were detected. We show evidence that, although it is rare (possibly due to losses of sexual reproduction- and meiosis-associated genes) C. graminicola can undergo sexual recombination. Our results support the hypotheses that intra- and intercontinental pathogen migration and genetic recombination have great impacts on the C. graminicola population structure
Migration and genetic recombination shape the global population structure of Colletotrichum graminicola, the causal agent of maize anthracnose.
Maize anthracnose, caused by the ascomycete fungus Colletotrichum graminicola, is an important crop disease worldwide. Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. The genus Colletotrichum is largely recognized as asexual, but several species have been reported to have a sexual cycle. We employed a population genomics approach to investigate the genetic diversity and reproductive biology of C. graminicola isolates infecting maize. We sequenced 108 isolates of C. graminicola collected in 14 countries using restriction site-associated DNA sequencing (RAD-Seq) and whole-genome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms showed populational differentiation at a global scale, with three genetic groups delimited by continental origin, corresponding to the isolates from South America, Europe, and North America, compatible with short-dispersal of the pathogen, and geographic subdivision. Intra and inter-continental migration was predicted between Europe and South America, likely associated with the movement of contaminated germplasm. Low clonality and evidence of genetic recombination were detected from the analysis of linkage disequilibrium and the pairwise homoplasy index (PHI) test for clonality. Although the sexual state of C. graminicola has only been reported in lab conditions, we showed strong evidence that genetic recombination have a great impact on C. graminicola population structure, in contrast to the traditional view of C. graminicola being mainly clonal
Population genomics provide insights into the global genetic structure of Colletotrichum graminicola, the causal agent of maize anthracnose.
Abstract: Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. We investigated the genetic diversity and reproductive biology of Colletotrichum graminicola isolates which infect maize by sequencing the genomes of 108 isolates collected from 14 countries using restriction site-associated DNA sequencing (RAD-seq) and whole-genome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms revealed three genetic groups delimited by continental origin, compatible with short-dispersal of the pathogen and geographic subdivision. Intra- and intercontinental migration was observed between Europe and South America, likely associated with the movement of contaminated germplasm. Low clonality, evidence of genetic recombination, and high phenotypic diversity were detected. We show evidence that, although it is rare (possibly due to losses of sexual reproduction- and meiosis-associated genes) C. graminicola can undergo sexual recombination. Our results support the hypotheses that intra- and intercontinental pathogen migration and genetic recombination have great impacts on the C. graminicola population structure. Importance: Plant pathogens cause significant reductions in yield and crop quality and cause enormous economic losses worldwide. Reducing these losses provides an obvious strategy to increase food production without further degrading natural ecosystems; however, this requires knowledge of the biology and evolution of the pathogens in agroecosystems. We employed a population genomics approach to investigate the genetic diversity and reproductive biology of the maize anthracnose pathogen (Colletotrichum graminicola) in 14 countries. We found that the populations are correlated with their geographical origin and that migration between countries is ongoing, possibly caused by the movement of infected plant material. This result has direct implications for disease management because migration can cause the movement of more virulent and/or fungicide-resistant genotypes. We conclude that genetic recombination is frequent (in contrast to the traditional view of C. graminicola being mainly asexual), which strongly impacts control measures and breeding programs aimed at controlling this disease.On-line first
Population Genomics Provide Insights into the Global Genetic Structure of Colletotrichum graminicola, the Causal Agent of Maize Anthracnose
Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. We investigated the genetic diversity and reproductive biology of Colletotrichum graminicola isolates which infect maize by sequencing the genomes of 108 isolates collected from 14 countries using restriction site-associated DNA sequencing (RAD-seq) and whole-genome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms revealed three genetic groups delimited by continental origin, compatible with short-dispersal of the pathogen and geographic subdivision. Intra- and intercontinental migration was observed between Europe and South America, likely associated with the movement of contaminated germplasm. Low clonality, evidence of genetic recombination, and high phenotypic diversity were detected. We show evidence that, although it is rare (possibly due to losses of sexual reproduction- and meiosis-associated genes) C. graminicola can undergo sexual recombination. Our results support the hypotheses that intra- and intercontinental pathogen migration and genetic recombination have great impacts on the C. graminicola population structure. IMPORTANCE Plant pathogens cause significant reductions in yield and crop quality and cause enormous economic losses worldwide. Reducing these losses provides an obvious strategy to increase food production without further degrading natural ecosystems; however, this requires knowledge of the biology and evolution of the pathogens in agroecosystems. We employed a population genomics approach to investigate the genetic diversity and reproductive biology of the maize anthracnose pathogen (Colletotrichum graminicola) in 14 countries. We found that the populations are correlated with their geographical origin and that migration between countries is ongoing, possibly caused by the movement of infected plant material. This result has direct implications for disease management because migration can cause the movement of more virulent and/or fungicide-resistant genotypes. We conclude that genetic recombination is frequent (in contrast to the traditional view of C. graminicola being mainly asexual), which strongly impacts control measures and breeding programs aimed at controlling this disease.This research was supported by grants AGL2015-66362-R, RTI2018-093611-B-100, and PID2021-125349NB-100, funded by the Ministry of Science and Innovation (MCIN) of Spain AEI/10.13039/501100011033; and by grant SA165U13 funded by the Junta de Castilla y Léon. F.R. was supported by grant FJC2020-043351-I financed by MCIN/AEI /10.13039/501100011033 and by the European Union NextGenerationEU/PRTR. R.B. was supported by the postdoctoral program of USAL (Program II). F.B.C.-F. was supported by grant BES-2016-078373, funded by MCIN/AEI/10.13039/501100011033. S.B. was supported by a fellowship program from the regional government of Castilla y León. W.B. was supported by a productivity fellowship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 307855/2019-8). Genome sequencing was funded by the UNC Microbiome Core, which is funded in part by the Center for Gastrointestinal Biology and Disease (CGIBD P30 DK034987) and the UNC Nutrition Obesity Research Center (NORC P30 DK056350). P.D.E. was partially supported by the USDA National Institute of Food and Federal Appropriations under Project PEN04660 and accession no. 1016474.Peer reviewe
Guidelines for the reliable use of high throughput sequencing technologies to detect plant pathogens and pests
High-throughput sequencing (HTS) technologies have the potential to become one of the most significant advances in molecular diagnostics. Their use by researchers to detect and characterize plant pathogens and pests has been growing steadily for more than a decade and they are now envisioned as a routine diagnostic test to be deployed by plant pest diagnostics laboratories. Nevertheless, HTS technologies and downstream bioinformatics analysis of the generated datasets represent a complex process including many steps whose reliability must be ensured. The aim of the present guidelines is to provide recommendations for researchers and diagnosticians aiming to reliably use HTS technologies to detect plant pathogens and pests. These guidelines are generic and do not depend on the sequencing technology or platform. They cover all the adoption processes of HTS technologies from test selection to test validation as well as their routine implementation. A special emphasis is given to key elements to be considered: undertaking a risk analysis, designing sample panels for validation, using proper controls, evaluating performance criteria, confirming and interpreting results. These guidelines cover any HTS test used for the detection and identification of any plant pest (viroid, virus, bacteria, phytoplasma, fungi and fungus-like protists, nematodes, arthropods, plants) from any type of matrix. Overall, their adoption by diagnosticians and researchers should greatly improve the reliability of pathogens and pest diagnostics and foster the use of HTS technologies in plant health