115 research outputs found

    Matter-wave interference and deflection of tripeptides decorated with fluorinated alkyl chains

    Get PDF
    Studies of neutral biomolecules in the gas phase allow for the study of molecular properties in the absence of solvent and charge effects, thus complementing spectroscopic and analytical methods in solution or in ion traps. Some properties, such as the static electronic susceptibility, are best accessed in experiments that act on the motion of the neutral molecules in an electric field. Here, we screen seven peptides for their thermal stability and electron impact ionizability. We identify two tripeptides as sufficiently volatile and thermostable to be evaporated and interfered in the long‐baseline universal matter‐wave interferometer. Monitoring the deflection of the interferometric molecular nanopattern in a tailored external electric field allows us to measure the static molecular susceptibility of Ala–Trp–Ala and Ala–Ala–Trp bearing fluorinated alkyl chains at C‐ and N‐termini

    On the evaluation of methods for the recovery of plant root systems from X-ray computed tomography images

    Get PDF
    X-ray micro computed tomography (”CT) allows non-destructive visualisation of plant root systems within their soil environment and thus offers an alternative to commonly used destructive methodologies for the examination of plant roots and their interaction with the surrounding soil. Various methods for the recovery of root system information from X-ray CT image data have been presented in the literature. Detailed, ideally quantitative, evaluation is essential, in order to determine the accuracy and limitations of the proposed methods, and to allow potential users to make informed choices between them. This, however, is a complicated task. Three-dimensional ground truth data is expensive to produce, and the complexity of X-ray CT data means that manually generated ground truth may not be definitive. Similarly, artificially generated data is not entirely representative of real samples. The aims of this work are to raise awareness of the evaluation problem and to propose experimental approaches that allow the performance of root extraction methods to be assessed, ultimately improving the techniques available. To illustrate the issues, tests are conducted using both artificially generated images and real data samples

    Visual tracking for the recovery of multiple interacting plant root systems from X-ray ÎŒCT images

    Get PDF
    We propose a visual object tracking framework for the extraction of multiple interacting plant root systems from three-dimensional X-ray micro computed tomography images of plants grown in soil. Our method is based on a level set framework guided by a greyscale intensity distribution model to identify object boundaries in image cross-sections. Root objects are followed through the data volume, while updating the tracker's appearance models to adapt to changing intensity values. In the presence of multiple root systems, multiple trackers can be used, but need to distinguish target objects from one another in order to correctly associate roots with their originating plants. Since root objects are expected to exhibit similar greyscale intensity distributions, shape information is used to constrain the evolving level set interfaces in order to lock trackers to their correct targets. The proposed method is tested on root systems of wheat plants grown in soil

    High-resolution computed tomography reconstructions of invertebrate burrow systems

    Get PDF
    The architecture of biogenic structures can be highly influential in determining species contributions to major soil and sediment processes, but detailed 3-D characterisations are rare and descriptors of form and complexity are lacking. Here we provide replicate high-resolution micro-focus computed tomography (ÎŒ-CT) data for the complete burrow systems of three co-occurring, but functionally contrasting, sediment-dwelling inter-tidal invertebrates assembled alone, and in combination, in representative model aquaria. These data (≀2,000 raw image slices aquarium−1, isotropic voxel resolution, 81 Όm) provide reference models that can be used for the development of novel structural analysis routines that will be of value within the fields of ecology, pedology, geomorphology, palaeobiology, ichnology and mechanical engineering. We also envisage opportunity for those investigating transport networks, vascular systems, plant rooting systems, neuron connectivity patterns, or those developing image analysis or statistics related to pattern or shape recognition. The dataset will allow investigators to develop or test novel methodology and ideas without the need to generate a complete three-dimensional computation of exemplar architecture

    A mini-twister variant and impact of residues/cations on the phosphodiester cleavage of this ribozyme class.

    Get PDF
    Nucleolytic ribozymes catalyze site-specific cleavage of their phosphodiester backbones. A minimal version of the twister ribozyme is reported that lacks the phylogenetically conserved stem P1 while retaining wild-type activity. Atomic mutagenesis revealed that nitrogen atoms N1 and N3 of the adenine-6 at the cleavage site are indispensable for cleavage. By NMR spectroscopy, a pKa value of 5.1 was determined for a 13C2-labeled adenine at this position in the twister ribozyme, which is significantly shifted compared to the pKa of the same adenine in the substrate alone. This finding pinpoints at a potential role for adenine-6 in the catalytic mechanism besides the previously identified invariant guanine-48 and a Mg2+ ion, both of which are directly coordinated to the non-bridging oxygen atoms of the scissile phosphate; for the latter, additional evidence stems from the observation that Mn2+ or Cd2+ accelerated cleavage of phosphorothioate substrates. The relevance of this metal ion binding site is further emphasized by a new 2.6 Å X-ray structure of a 2â€Č-OCH3-U5 modified twister ribozyme

    Developmental morphology of cover crop species exhibit contrasting behaviour to changes in soil bulk density, revealed by X-ray computed tomography

    Get PDF
    Plant roots growing through soil typically encounter considerable structural heterogeneity, and local variations in soil dry bulk density. The way the in situ architecture of root systems of different species respond to such heterogeneity is poorly understood due to challenges in visualising roots growing in soil. The objective of this study was to visualise and quantify the impact of abrupt changes in soil bulk density on the roots of three cover crop species with contrasting inherent root morphologies, viz. tillage radish (Raphanus sativus), vetch (Vicia sativa) and black oat (Avena strigosa). The species were grown in soil columns containing a two-layer compaction treatment featuring a 1.2 g cm-3 (uncompacted) zone overlaying a 1.4 g cm-3 (compacted) zone. Three-dimensional visualisations of the root architecture were generated via X-ray computed tomography, and an automated root-segmentation imaging algorithm. Three classes of behaviour were manifest as a result of roots encountering the compacted interface, directly related to the species. For radish, there was switch from a single tap-root to multiple perpendicular roots which penetrated the compacted zone, whilst for vetch primary roots were diverted more horizontally with limited lateral growth at less acute angles. Black oat roots penetrated the compacted zone with no apparent deviation. Smaller root volume, surface area and lateral growth were consistently observed in the compacted zone in comparison to the uncompacted zone across all species. The rapid transition in soil bulk density had a large effect on root morphology that differed greatly between species, with major implications for how these cover crops will modify and interact with soil structure

    Bi-allelic mutation in SEC16B alters collagen trafficking and increases ER stress

    Get PDF
    Osteogenesis imperfecta (OI) is a genetically and clinically heterogeneous disorder characterized by bone fragility and reduced bone mass generally caused by defects in type I collagen structure or defects in proteins interacting with collagen processing. We identified a homozygous missense mutation in SEC16B in a child with vertebral fractures, leg bowing, short stature, muscular hypotonia, and bone densitometric and histomorphometric features in keeping with OI with distinct ultrastructural features. In line with the putative function of SEC16B as a regulator of trafficking between the ER and the Golgi complex, we showed that patient fibroblasts accumulated type I procollagen in the ER and exhibited a general trafficking defect at the level of the ER. Consequently, patient fibroblasts exhibited ER stress, enhanced autophagosome formation, and higher levels of apoptosis. Transfection of wild-type SEC16B into patient cells rescued the collagen trafficking. Mechanistically, we show that the defect is a consequence of reduced SEC16B expression, rather than due to alterations in protein function. These data suggest SEC16B as a recessive candidate gene for OI

    Murine Langerin+ dermal dendritic cells prime CD8+ T cells while Langerhans cells induce cross-tolerance.

    Get PDF
    Skin dendritic cells (DCs) control the immunogenicity of cutaneously administered vaccines. Antigens targeted to DCs via the C-type lectin Langerin/CD207 are cross-presented to CD8(+) T cells in vivo. We investigated the relative roles of Langerhans cells (LCs) and Langerin(+) dermal DCs (dDCs) in different vaccination settings. Poly(I:C) and anti-CD40 agonist antibody promoted cytotoxic responses upon intradermal immunization with ovalbumin (OVA)-coupled anti-Langerin antibodies (Langerin/OVA). This correlated with CD70 upregulation in Langerin(+) dDCs, but not LCs. In chimeric mice where Langerin targeting was restricted to dDCs, CD8(+) T-cell memory was enhanced. Conversely, providing Langerin/OVA exclusively to LCs failed to prime cytotoxicity, despite initial antigen cross-presentation to CD8(+) T cells. Langerin/OVA combined with imiquimod could not prime CD8(+) T cells and resulted in poor cytotoxicity in subsequent responses. This tolerance induction required targeting and maturation of LCs. Altogether, Langerin(+) dDCs prime long-lasting cytotoxic responses, while cross-presentation by LCs negatively influences CD8(+) T-cell priming. Moreover, this highlights that DCs exposed to TLR agonists can still induce tolerance and supports the existence of qualitatively different DC maturation programs.journal articleresearch support, n.i.h., extramuralresearch support, non-u.s. gov't2014 Sepimporte

    Revision and analysis of the chromosome variability in the speciose genus Akodon (Rodentia, Sigmodontinae), including new data from Argentina

    Get PDF
    Abstract Rodentia has a high species number and chromosomal variability. The South American genus Akodon is one of the most speciose muroids, with more than 40 species included in several species groups. Here, we characterize cytogenetically specimens of Akodon from central-western Argentina. Subsequently, we reviewed and analyzed the cytogenetic data for this genus, build a phylogeny and mapped chromosome changes to interpret its evolution. Specimens of A. dolores from central-western Argentina have 2n=42-44/FNa=44 (46, 48) due to a Robertsonian rearrangement. Our data expand the distribution range known for this polymorphism and confirm its geographic structure. Other specimens had 2n=40/FNa=40, representing populations of A. oenos, A. polopi, and A. spegazzinii. All karyotypes have a low amount of heterochromatin, concentrated in centromeres and sex chromosomes, as in other rodents. The complement with 2n=40/FNa=40 is the most frequent in Akodon and is shared by most species in some groups. Chromosome numbers are very diverse. The FNa shows less variability; FNa=42 was recovered as ancestral, excluding A. mimus, which was connected at the base of the Akodon tree and has FNa=44. This indicates a complex chromosome evolution in Akodon, and suggests that reductions and increases in the 2n and FNa evolved independently in some lineages

    X‐ray CT reveals 4D root system development and lateral root responses to nitrate in soil

    Get PDF
    Abstract The spatial arrangement of the root system, termed root system architecture, is important for resource acquisition as it directly affects the soil zone explored. Methods for phenotyping roots are mostly destructive, which prevents analysis of roots over time as they grow. Here, we used X‐ray microcomputed tomography (ÎŒCT) to non‐invasively characterize wheat (Triticum aestivum L.) seedling root development across time under high and low nitrate nutrition. Roots were imaged multiple times with the 3D models co‐aligned and timestamped in the architectural plant model OpenSimRoot for subsequent root growth and nitrate uptake simulations. Through 4D imaging, we found that lateral root traits were highly responsive to nitrate limitation in soil with greater lateral root length under low N. The root growth model using all ÎŒCT root scans was comparable to a parameterized model using only the final root scan in the series. In a second ÎŒCT experiment, root growth and nitrate uptake simulations of candidate wheat genotypes found significant root growth and uptake differences between lines. A high nitrate uptake wheat line selected from field data had a greater lateral root count and length at seedling growth stage compared with a low uptake line
    • 

    corecore