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Abstract We propose a visual object tracking frame-
work for the extraction of multiple interacting plant

root systems from three-dimensional X-ray micro com-
puted tomography images of plants grown in soil. Our
method is based on a level set framework guided by a

greyscale intensity distribution model to identify object

boundaries in image cross-sections. Root objects are

followed through the data volume, while updating the

tracker’s appearance models to adapt to changing in-

tensity values. In the presence of multiple root systems,
multiple trackers can be used, but need to distinguish
target objects from one another in order to correctly

associate roots with their originating plants. Since root

objects are expected to exhibit similar greyscale inten-

sity distributions, shape information is used to con-

strain the evolving level set interfaces in order to lock

trackers to their correct targets. The proposed method

is tested on root systems of wheat plants grown in soil.
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1 Introduction

Image-based phenotyping has become an integral part

of many plant biological studies, assisting researchers in
extracting and exploiting information implicit in col-
lected image data. The focus can vary from specific

plant organs [1, 2] to whole individual plants [3]. In this

work we are interested in the below-ground portion of

the plant, its root system. Plants rely on their roots

for water and nutrient uptake, which largely determine

their performance and development [4]. We focus on
the analysis of multiple interacting plants, as their root
systems can facilitate either cooperative or competitive

interactions. This is achieved, e.g., by influencing the

composition of the bacterial flora in the rhizosphere,

which may positively affect the nutrient availability, or

by competing for (limited) resources [5].

When roots are to be examined, they are usually
either destructively removed from their environment

[6] or grown in artificial media [7], which may alter

their natural growth behaviour due to the lack of com-

plex biological, chemical and physical properties usu-

ally found in soil [8]. An alternative solution that al-

lows roots to be imaged in soil is provided by X-ray

micro computed tomography (µCT), which is becom-
ing increasingly accessible [9]. An additional advantage

to its non-disruptive characteristic [10] is the acquisi-

tion of three-dimensional volumetric image data, which

supports more accurate quantification of root system

traits. Plant root systems are complex, highly branched

structures, composed of many individual roots of vary-

ing size. The recovery of the fine and complex structure

of plant roots from µCT image data is a challenging

problem. The process is complicated by the highly het-

erogeneous growth environment, composed of minerals,

soil particles, organic matter, water and air filled pores.
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We present a visual object tracking framework that

allows the extraction of interacting plant root systems
from their soil environment in µCT image data. The

paper both provides a detailed elaboration of previous

single root mechanisms [11, 12] and describes their ex-

tension to multiple interacting root systems. A given

data volume can be horizontally sliced into thin cross-

sections to obtain a stack of images. Using a level set
method guided by a greyscale intensity distribution model,
we identify the boundaries of root cross-sections

in each image. When traversing these images in se-
quence, root objects will appear at slightly different
positions due to the root’s slanted growth through the
soil environment. The architectural structure of plant

root systems is recovered by tracking individual root

cross-sections through a sequence of image slices.

Tracking is achieved using an adaptive appearance

model and readjusting the interface of the level set func-

tion to the new location and outline of the root object.

In the presence of multiple root systems, multiple track-

ers can be used but root cross-sections need to be

distinguished from one another in order to allow

correct labelling of neighbouring plants. However, be-

cause all root objects are likely to have similar greyscale

intensity values, their appearance models can be ex-

pected to be similar, or even identical. If two or more

independently tracked targets interact, their trackers

can easily drift away to the object that best fits the

model [13]. This can result in uncontrolled behaviour in

which trackers switch their targets or follow the same
target while losing hold of others. During root extrac-
tion, this can lead to root cross-sections being assigned
to incorrect root systems. To address the target coa-

lescence problem, a shape constraint is added to the

evolving interface of the level set function during tar-

get interactions.

This paper is an extension of [14], in which we present
additional experimental work on the recovery of inter-

acting root systems of wheat plants. The resulting data
is used to identify spatial characteristics in relation to
neighbouring plants, to facilitate the examination of re-
source competition. In what follows we briefly overview

related work on the extraction of root-structure-like

networks with a focus on X-ray CT (Section 2) and

give a detailed description of our proposed method (Sec-

tion 3). The extraction method is first applied to vol-

ume data of individual and then of multiple interacting

root systems of winter wheat Cordiale (Triticumaes-

tivum L.) (Section 4), followed by discussion and con-

clusions (Section 5).

2 Related Work

Using a high energy X-ray CT scanner, Heeraman et

al. [15] endeavoured to image and quantify the root

systems of plants grown in sand culture. In this they

were among the first to show that roots can be sepa-

rated from non-root material on a computational ba-

sis and not just by human assumption of the presence

of roots. A number of voxels were manually selected

to provide samples of different components (air, roots,

sand). These were tested for normality and used to sta-

tistically classify the remaining voxels to one of these

groups. The method does not guarantee connectivity

and outlier voxels can easily be assigned to incorrect

components. Seeking to advance imaging and analysis

procedures, Lontoc-Roy et al. [16] presented methods

and results obtained using X-ray CT for soil-root stud-

ies. Roots were segmented from the images by visually
choosing lower and upper threshold values. The result-
ing segmentation included primarily larger roots. In a

second step, an iterative three-dimensional region grow-

ing method was used, appending voxels connected to

the initial extraction, but which also fall within a sec-

ond, wider, threshold boundary. A similar approach is

reported by Perret et al. [17]. A predefined threshold
boundary was applied, after which a 26-neighbour con-
nectivity constraint was imposed. While this guarantees

connectivity of the root system, thresholding only gives

satisfactory results if the greyscale values of different

components do not overlap. This is often not the case.

In Pierret et al. [18], image slices were first seg-

mented using a combination of thresholding and a top-

hat filter [19]. By superimposing two consecutive im-

ages, the resulting root cross-sections were tested for

continuity while roughly defining the roots’ skeleton.

Since elliptical objects were prone to artefacts, they

were ignored in the analysis, which had the disadvan-

tage of missing horizontally and near-horizontally grow-

ing roots. The authors were aware of this limitation,

but considered it a reasonable compromise, leaving the
method useful for preliminary investigations. Quantifta-
tive measurements were made based on the extracted

skeletons. To overcome the limitation of thresholding

for overlapping greyscale intensity distributions, Kaest-

ner et al. [20] applied a non-linear diffusion filter multi-

ple times with different parameters to smooth out the

texture of the surrounding sand. As a result, the in-
tensity distribution of root material was shifted to the
tail of the sand distribution, making Rosin’s unimodal

thresholding algorithm applicable [21]. To remove mis-

classified voxels, a dilation by reconstruction operation

[22] was applied to eliminate speckles while preserving

thin root segments and enforcing connectivity of the
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root system. Filtering the data does not always result

in the distribution of root material being shifted to the

tail of the background distribution. The effect depends

on the condition and composition of the soil matrix.

While the methods presented by Pierret et al. [18] and

Kaestner et al. [20] make use of thresholding to perform

an initial crude segmentation, additional rules are ap-

plied to help decide whether an extracted object reflects
the characteristics of a root segment.

An alternative approach to the non-invasive study of

the interaction of root systems of different plants grown
in soil was recently presented by [23], who demonstrated
the combined use of magnetic resonance imaging (MRI)

and positron emission tomography (PET) to image root

systems of two maize plants grown in a single soil col-

umn. The sample was imaged using MRI to visualise

the root systems and to separate them from the sur-
rounding soil. 11CO2 was then inducted to the shoot of

one of the plants, which was taken up and transferred
to the root system, providing a radioactive label. The

radioactivity was measured using PET and the result-

ing data co-registered with the structural description

of the root system recovered from MRI. This method-

ology has the potential to identifiy and analyse individ-
ual root systems in an environment shared by multiple
plants.

More recently, Metzner et al. [24] performed a di-

rect comparison of the ability of X-ray CT and MRI
to support the extraction of roots of 3 week old bean

plants from their soil environment in a variety of pot

sizes. Both imaging methods allowed roots to be ex-

tracted. The ability to tune the MRI process to spe-

cific materials meant that it provided images with much

higher contrast between roots and soil, easing root de-

tection, particularly in larger pots. These images were,

however, of much lower resolution than those obtained

from X-ray CT, and the acquisition process requires the

soil used to be heavily processed, destroying its natural

structure. Though the extraction of roots from X-ray

CT is challenging, and interactive methods were em-

ployed by Metzner et al. [24], a successful automatic

solution would provide more accurate descriptions of

root system architectures than MRI, in their natural
environment.

Using an electron beam X-ray CT scanner, Sonka et

al. [25] presented a method able to identify airway trees
in lungs, which share a similar structure with plant root
systems. Analogous to the method presented by Lontoc-

Roy et al. [16], a conservative threshold was employed

within a three-dimensional region-growing algorithm to

recover the primary tree of the airway structure, but

typically missed fine, smaller diameter segments. To

improve performance on small airways, the image was

scaled by a factor of 2 and enhanced using a top hat

transform [26]. Using edge-based region-growing, the
enhanced image was segmented into airways, vessels
and background (corresponding to dark, bright and in-

termediate greyscale values). A rule-based analysis cap-

turing prior knowledge of the anatomical structure of

airways and their relationship with pulmonary vascular

trees, was used to refine the segmentation. Although

prior knowledge of root system structures could be use-

ful in their recovery, linking root segments to their en-

vironment is not straightforward.

An alternative method for the extraction of airways

from electron beam X-ray CT image data was presented

by Aykac et al. [27]. Their method is based on mathe-

matical morphology, which was also a key component in

Kaestner et al.’s method [20]. A greyscale morphologi-

cal reconstruction was used to identify local minima in

cross-sectional images, which are likely to correspond to

fine airway segments. The image was then thresholded

using a relative value lying between the minimum and

maximum greyscale values. This process was repeated

a number of times using differently-sized morphological

structure elements. The union of all candidate regions

was used to reconstruct the airway tree. While mor-
phological operations can enhance fine details in the
image data, it cannot completely overcome the limita-
tions of threshold based segmentation. In addition to

methods based on region growing [25] or mathemati-

cal morphology [27], solutions were proposed that use

a tracing strategy [28].

Tracing was also found to be successful in the ex-

traction of three-dimensional and root-structure-like net-

works outside of X-ray CT imaging. Flasque et al. [29]

for instance, used magnetic resonance angiography (MRA)

to image cerebral blood vessels and developed a cen-

treline tracing-based method for their extraction. The

centreline was traced stepwise, with successive points

being estimated by searching within an orientated par-

allelepiped around previously identified points. Rules,

like the definition of a maximum allowable curvature,
were imposed on each search area. A rule-based ap-
proach allows the specification of a profile that is based

on prior knowledge. To deal with the detection of junc-

tions or branches, the number of entry and exit points

along the surface of each parallelepiped is noted. By the

definition of a continuous vessel, a parallelepiped must

have exactly one entry and exit point. If more than
one exit point is detected, then the presence of a junc-
tion is assumed, and a new starting point is created. In

a final step, all traced centreline points are connected

using B-spline curves. A common problem when trac-

ing centrelines is the possibility of loops being formed

due to interactions with other vessels or irregularities in
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the image data. An alternative approach was presented

by Wilson and Noble [30]. To extract the vascular net-

work from the image data, an adaptive expectation

maximization (EM) algorithm was presented that re-

cursively divides the volume into smaller sub-volumes,

within which a localised segmentation was performed.

The parameters of the distributions identified within

a sub-volume indicate which tissues are present, and
support the classification of individual voxels. Varia-
tion in signal intensity is expected for arteries, but not

for the cerebrospinal fluid and brain tissue. In this the

data differs from soil-root samples, where the soil en-

vironment is found to be highly heterogeneous. Other

complex root-structure-like networks are found, for in-

stance, in neuronal arborescences [31].

3 Method

In this section we give a detailed description of the pro-
posed extraction technique, beginning with the extrac-

tion of a single individual root system (i.e. assuming
that all root cross-sections belong to the same plant)[11,
12]. We introduce each of the components and show how
they are integrated into the tracking framework. A col-

lision detection mechanism is then added to identify the

interaction of multiple targets, to which a shape con-

straint is imposed, allowing the separate extraction of

multiple interacting plant root systems [14]. The objec-
tives of the work reported here are to:

– identify the boundaries of root cross-sections

– track individual root cross-sections

– keep root cross-sections arising from different plants
separate

3.1 Object Boundary Detection

We adopt the level set framework [32] to search for the
boundaries of root cross-sections. We aim at finding the
interface

C (t) =

{

(x, y)

∣

∣

∣

∣

Φx,y,t = 0

}

(1)

of a time-dependent function Φx,y,t that separates an

object consisting of comparable intensity values from its
heterogeneous background. The interface of Φx,y,t can

be implicitly propagated by solving a partial differential
equation

∂Φx,y,t

∂t
+ F |∇Φx,y,t| = 0 (2)

(a)

(b)

Fig. 1: Cross-sectional image showing (a) raw data and

(b) raw data with root objects identified

which can be approximated and rewritten using a finite

forward difference scheme in time

Φt+1
x,y − Φt

x,y

∆t
+ F

∣

∣∇x,yΦ
t
x,y

∣

∣ = 0 (3)

giving a general formulation of the time-discretised level

set method, with F being a speed function that defines

the motion of the front over time t. One possible way

to find the boundary of an arbitrary object is to define

a speed function that stops at high image gradients.

A solution based on the formulation presented in [33]

was tested, but failed to correctly identify root objects:

blurred and low contrast boundaries are common in CT

data. A solution is therefore proposed that evolves a

level set function guided by a greyscale intensity dis-

tribution model [11]. Assuming we have the greyscale

intensity values of a known root object, we use a ker-

nel density estimator to build a statistical probability
density function, which we will refer to as our root ap-



Recovery of Multiple Interacting Plant Root Systems 5

pearance model pm

pm(x) =
1

nh

n
∑

i=0

K

(

x− x (i)

h

)

(4)

where n is the number of data points, x(i) the sam-

ples of the greyscale distribution, h the bandwidth and

K a Gaussian smoothing kernel K(x) = 1√
2π

e−
1
2
x2

. Us-

ing the Jensen-Shannon (JS) divergence [34] as given in
Equation 5, we compute the distance between a prob-
ability density function pf estimated around the inter-

face of the level set function and our known root model
pm

JS(pf , pm) = H(w1pf +w2pm)−w1H(pf )−w2H(pm)

(5)

where H is the Shannon entropy function calculated as

in Equation 6 over the range of the probability den-
sity function of possible greyscale values n. w1 and w2

are two weighting parameters w1, w2 ≥ 0, w1 + w2 = 1

used to balance the contribution of the two statistical

probability density functions and useful for conditional

probability studies where the weighting parameters rep-

resent prior probabilities. In our case, however, we set

w1 = w2 = 0.5.

H(p) = −
n
∑

i=0

pi logb (pi) (6)

The JS divergence is a non-negative and symmetric dis-
similarity measure, bounded by [0, logb2]. Using a log-

arithm of base 2 results in a distance that is measured
within [0, 1], where 0 is considered a complete match

between two probability density functions. The higher

the value of the JS divergence the lower is the proba-

bility that the data come from the same distribution.

These properties, and the fact that the dissimilarity

measure is not constrained by the number of samples

and their shape of the distribution, makes the JS di-
vergence a good choice for our application. Given the
above definitions, we can now build them into a level

set framework

Φt+1
x,y = Φt

x,y +∆t
[

− (α)
(

JSβ∨∇
+ + JSβ∧∇

−)+ (1− α) (κ)
]

(7)

where JSβ∨ = max (⌈β − JS⌉, 0) and JSβ∧ = min

(⌊β − JS⌋, 0) are the propagation forces, with β ∈ [0, 1]

defining the acceptance distance of the JS divergence

between model and data distribution. α ∈ [0, 1] is a
weighting parameter between the propagation force and

the curvature dependency κ = ∇ ·
∇Φt

x,y

|∇Φt
x,y|

of the front.

The numerical solution requires a difference scheme to

be chosen that propagates information in the direc-

tion upwind to the moving interface. This is achieved

through∇+ = [max(D−x, 0)2+min(D+x, 0)2+max(D−y, 0)2+

min(D+y, 0)2]1/2 in case of an expanding force and sim-

ilarly through ∇− = [max(D+x, 0)2 +min(D−x, 0)2 +

max(D+y, 0)2+min(D−y, 0)2]1/2 for a contracting force,
where D+x =

Φx+∆x,y,t−Φx,y,t

∆x is the forward difference

operator and D−x =
Φx,y,t−Φx−∆x,y,t

∆x the backward dif-

ference operator in x, and respectively D+y and D−y

in y. The interface evolves until the front converges

to a stationary solution, which is checked by counting

the number of sign changes of the level set function.
This has further the advantage that the evolution pro-
cess can be terminated even if the front oscillates [32].
The level set framework is implemented using the nar-

row band strategy [35] for increased efficiency and the

fast sweeping method [36] for re-initialisation. Figure 1

shows a cross-sectional image in which root objects are

identified and separated from their complex and hetero-
geneous soil environment using the method described
above.

3.2 Tracking Root Objects

Target objects are selected for tracking by the user man-

ually setting seed points in the first (top) image in the

stack. An initial root appearance model is built for each

target from the greyscale intensity values within a 5

pixel radius. To provide a good initial root model, seed

points should be placed to capture as many valid pixels

as possible. Seed points can be placed anywhere within

large root cross-sections. The seed points also mark

the initial interface of the propagating level set func-

tion, which is evolved until the root object boundaries

are identified. Since a level set function can implicitly

represent multiple interfaces, a classical two-pass con-

nected component algorithm [37] is used to assign a

label to each root cross-section. Labels are propagated

when constructing the narrow band around an interface

and it is therefore possible to evolve the level set func-

tion using different appearance models for each root

object. This means that we do not have a single model

that represents all the root objects in a plant at the
same time, but several models that are generated, each
representing a single target (root segment).

Once the boundaries of root objects are identified,
the aim is to track these target objects through a se-

quence of horizontal slices, or images, building up a

three-dimensional segmentation of the root system. Due

to the high resolution of X-ray µCT data, we assume

that corresponding root locations in consecutive images

partially overlap, and that their greyscale intensity dis-
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(a) (b) (c) (d)

Fig. 2: A sequence of cross-sectional images, taken from a single CT stack at 40-slice intervals, with tracked root

cross-sections highlighted. Tracking is initialised manually on the (single) root stem. Note the large number of
distinct targets tracked by a single level set, and the changing shape of the tracked region (inset images)

(a.1) (a.2) (a.3) (a.4) (a.5) (a.6) (a.7) (a.8) (a.9) (a.10) (a.11)

(b.1) (b.2) (b.3) (b.4) (b.5) (b.6) (b.7) (b.8) (b.9) (b.10) (b.11)

(c.1) (c.2) (c.3) (c.4) (c.5) (c.6) (c.7) (c.8) (c.9) (c.10) (c.11)

Fig. 3: Two level set function A (red) and B (blue) interacting with each other, where (a) front A penetrates front

B, (b) front B penetrates front A and (c) neither A or B is penetrated

tributions vary smoothly. Some variation is to be ex-

pected due to the heterogeneous environment of vary-

ing density materials and the unevenly distributed wa-

ter content in both the soil and the root system, which

can affect the estimated X-ray attenuation values mak-

ing up the voxel data. Therefore, as root objects are

tracked through the image sequence, their assigned root

model distribution must be updated to adapt to their

changing appearance. This is done by re-computing the

root appearance model from the greyscale intensity val-

ues enclosed by each of the converged interfaces of the

level set function.

Updating the root model is an inevitable step, yet

it conceals potential problems. Noise or small areas of

background might be included within the interface and

so contribute to its probability density function. These

errors can accumulate and result in a model that is

no longer an appropriate representation of a tracked

root object. To reduce the potential of model drift, we

use a complex Fourier shape descriptor [38] to compare

the shape of a root object in pairs of consecutive im-

ages and only update the root appearance model when

the sum of squared differences of their filtered and nor-

malised power spectra is below an empirically deter-

mined threshold.
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A root system is composed of several branching roots.

Splitting of a root boundary as it branches throughout
the image stack is implicitly dealt with by the level set’s
ability to adapt to changing topologies: as the level set

interface evolves from one state to another it can split

into multiple disjoint interfaces. When a target object

separates, the level set evolves based on the same root

model, but will become two distinct objects with their
own, independently updating root appearance model
after proceeding to the next image slice. Figure 2 shows

a sequence of cross-sectional images in which root ob-

jects are tracked from manual initialisation on the (sin-

gle) root stem.
The tracker described so far, as it follows a root ob-

ject through the image stack, will only capture roots

that branch and grow downward, along the search di-

rection. Any upward oriented roots will be missed, since

they appear in the image stack before they connect to

an identified target object. To address this, an addi-

tional step is introduced, allowing the tracker to ’look

back’ at the previously analysed image, using any of the

currently identified targets to search for new root ob-

jects that have not been detected before. If such objects

are found, they are temporarily labelled as potential

upward growing roots, while the extraction process is

continued downwards until the end of the image stack

is reached. If, at the end, one or more objects have

been labelled as upward oriented roots, then the image
stack is reversed and each of the labels picked up by the
tracker and followed as if they were downward oriented.
Jumping to assigned labels avoids re-examination of the

entire stack and further tracking of previously identified

roots. This process of alternating direction is repeated

until all targets have been examined and no new labels

remain [12].

3.3 Multiple Interacting Objects

To extract multiple root systems, a level set tracker is
initialised to each plant and their level set functions
evolved simultaneously. In this work we adopt the con-

cept of multiple level set functions as presented in [39].

Let Φt
A and Φt

B be two level set functions and their in-

terfaces occupy two different regions at time t. The level
set functions evolve separately, based on their individ-

ual root appearance models, resulting in a temporary
state of Φ∗

A and Φ∗
B . Φ

∗
A and Φ∗

B are then combined to

obtain the level set functions Φt+1

A and Φt+1

B at time

t+1. The combination of the temporary level set func-

tions depends on whether or not the interface of A can

penetrate the interface of B, or vice versa, and as such
pushes back the adjacent interface. Assuming that A

can penetrate B, but B cannot penetrate A, then the

new level set function at time step t+1 will be updated

according to:

Φt+1

A = Φ∗
A

Φt+1

B = max (Φ∗
B ,−Φ∗

A)
(8)

The following examples show how the rule in equation

8 solves the interaction between the level set functions

Φ∗
A and Φ∗

B . To recall, a level set function has negative

values inside and positive values outside of its interface.
There are different possible situations when updating
Φt+1

B , taking Φ∗
B and Φ∗

A into account. First, a point

may appear inside both Φ∗
A and Φ∗

B , so both level set

functions have negative values. As Φt+1

B is obtained by
taking the maximum of Φ∗

B and −Φ∗
A, and the negative

value of Φ∗
A is turned into a positive value, the point

is assigned to the outside of the interface Φt+1

B , while

Φt+1

A remains negative. The effect is that A pushes away

the interface of B. Now let us assume a point that is
neither part of the interface of A norB. This means that

both values are positive. By placing the minus sign in
front of −Φ∗

A, the positive value becomes negative, but

because of the maximum operator, the updated value

for Φt+1

B remains positive, and therefore is not affected

by the level set function Φ∗
A. Finally, let us assume that

a point is inside the interface of B but outside of A.

Because the value of a level set function represents the

distance to its interface, the negative value of −Φ∗
A will

be less or equal the negative value of Φ∗
B , and again,

the result for Φt+1

B at that point remains unaffected by

the level set function Φ∗
A.

These examples show how interacting level set fronts

can be controlled: this rule can be modified to define

similar rules such that during an encounter of two level

set fronts, neither is allowed to penetrate the other.

This will stop them from advancing further and give an

exact partition of the two regions at the front of col-

lision. The mechanism of multiple fronts can easily be

extended to any number of level set functions using the

same principles of combination. Each evolving front in

the set must be compared to all other level set func-

tions in the same set. This allows easy identification of

any collisions between interfaces and determination of

which of the level set functions interact. Figure 3 shows

three different scenarios in which two level set functions

(front A (red) and front B (blue)) are evolved until their

fronts interact with each other, at which point different

combination rules are applied. This is a key element in

the extraction of multiple interacting root systems, but

not sufficient to allow separation of those root systems.

While the combination rules allow individual trackers
to be separated, the true boundary between touching
root cross-sections remains unknown. Although level set

functions can penetrate each other’s interface, there is
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(a.1) (a.2) (a.3) (a.4) (a.5) (a.6) (a.7) (a.8) (a.9) (a.10)

(b.1) (b.2) (b.3) (b.4) (b.5) (b.6) (b.7) (b.8) (b.9) (b.10)

(c.1) (c.2) (c.3) (c.4) (c.5) (c.6) (c.7) (c.8) (c.9) (c.10)

Fig. 4: Two colliding target objects; (a) raw (artificial) data, (b) objects extracted using the conventional level

set tracking approach and (c) when the original method is combined with the ICP algorithm during the period of
contact (5-9)

no definition given yet of when these rules are to be

applied. For this, shape information is used to estimate

the boundary of root objects and so to find the inter-

secting front between them.

While tracking target objects through the image
stack, their shape is noted and used to control appear-

ance model updates. We can, therefore, easily recall an
object’s outline and store the most recent shape in-
formation seen before the interaction with other ob-
jects began. This information is kept until the inter-

action ceases. Let U = {ui|i = 1..Nu} be a set of

data points along the outline of a stored shape and
V = {vi|i = 1..Nv} be a set of data points along a level

set’s interface. The rotation matrix R and the transla-
tion matrix T are sought which minimise the root mean

squared distance between U and V and therefore find

the best alignment of the two point sets. This can be

achieved using the iterative closest point (ICP) algo-

rithm [40]. By calculating the centre of mass µu and
µv of the two point clouds, it is possible to determine

the cross-covariance matrix covuv =
1

Nu

∑Nu

i=1
[(ui −

µu)(vi − µv)
⊺] for U and V . Using the cyclic compo-

nents a = (A23, A31, A12) of a matrixA = covuv−cov⊺uv
allows the definition of a 4× 4 matrix Q

Q4×4 =

(

tr(covuv) a⊺

a covuv + cov⊺uv − tr(covuv)I3

)

(9)

The eigenvector r = (q1 q2 q3 q4) of the matrix
Q with the maximum eigenvalue is used to define the

rotation matrix R

R =









q21 + q22 − q23 − q24 2(q2q3 − q1q4) 2(q2q4 + q1q3) 0
2(q2q3 + q1q4) q21 + q23 − q22 − q24 2(q3q4 − q1q2) 0

2(q2q4 − q1q3) 2(q3q4 + q1q2) q21 + q24 − q22 − q23 0
0 0 0 1









(10)

The vector t = (µv −Rµu) is used to define the trans-

lation matrix T

T =









1 0 0 t1
0 1 0 t2
0 0 1 t3
0 0 0 1









(11)

The ICP algorithm is initialised by setting the rotation

and translation matrices equal to the identity matrix

R = T = I and begins by identifying for each point u ∈
U the best match with the shortest distance d(u, V ) =
minv∈V ‖v−u‖. This step can be efficiently performed

using a k-d tree [41]. With the set of matching pairs

as input, the best registration is calculated using the

quaternion-based least square method, determining R

and T which are then applied to U . The whole process

is repeated iteratively, finding new matching points and

their transformation, until the change in mean squared

error falls below a given threshold.

When the interfaces of two level set functions col-

lide, and each is made impenetrable, race conditions are

generated, as illustrated in Figure 4. This, however, can

be solved using shape constraints. The ICP algorithm,

as described above, is used to find the best alignment of
the stored shape to the evolving interface. This leaves
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(a) (b) (c) (d) (e)

Fig. 5: A sequence of cross-sectional images with multiple and interacting target objects tracked and highlighted.
Images are selected at irregular intervals of 20-40 slices, to best capture the interactions between roots.

each point within the interface in one of two possible

states: it is either outside or inside of its aligned re-

gion. Let S = {S1..Sn} be the enclosed areas of each
aligned shape to its corresponding level set function,

L = {Φ1..Φn} be the set of level set functions at time

t and L∗ = {Φ∗
1..Φ

∗
n} the set of their temporary states,

then the final value of the level set function Φt+1

i at

time step t+ 1 and position p is updated accordingly

Φt+1

i =











Φ∗
i if (p ∈ Si) ∧ (p /∈ {S\Si})

max (Φ∗
i ,−{Lj |p ∈ Sj}) if (p ∈ Si) ∧ (p ∩ {S\Si} 6= ∅)

max (Φ∗
i ,−{L∗\Φ∗

i }) if (p ∩ Si = ∅)

(12)

A particular benefit of this solution is that, while it

constrains the movement of the front, the selected root

object is not required to maintain the registered shape.

This allows the detection of lateral roots, since a level

set function can still evolve beyond the aligned region.

At the same time it prevents the path of a level set

function being blocked by faster evolving level sets and

allows their interface to be penetrated so that control

over its target is maintained. The effect of adding shape

constraints to the level set functions is illustrated in

Figure 4. Figure 5 shows a sequence of images in which

tracked root cross-sections interact with each other.

4 Experiment

Winter wheat Cordiale (Triticumaestivum L.) were grown

in eight columns of 30mm in diameter filled with soil.

The seeds were germinated in Petri dishes on wet fil-

ter papers, covered with an aluminium foil to shield

them from sunlight, and planted after two days. A single

seed was placed in four of the 30mm columns, of which

two were filled with loamy sand and another two with

clay loam. Two seeds were placed, approximately 10mm
apart, in the remaining four columns, each filled with
loamy sand. The soil was air-dried and sieved to <2mm

before being packed into the columns. The plants grew
in environment-controlled growth rooms with a 16/8
hours light cycle at a temperature of 23/18 degree Cel-
sius and were scanned ten days after germination. The

water status of the samples at the point of imaging was
approximately at field capacity.

The imaging device used in this experiment was a

Nanotom (Phoenix X-ray / GE Measurement & Con-

trol Systems) X-ray µCT scanner. Scanning of the 30mm

columns was performed at 120keV and 250µA, taking

1,200 projections at an exposure time of 750ms, using

a signal averaging of 3 and 1 skipping per projection. A

0.1mm Cu filter was used to harden the beam. Samples

were placed 200mm away from the X-ray gun, result-

ing in a volume with resolution of 25.0µm voxel size
and an image stack of 1,400×1,400×2,200 voxels. The

acquired volume data was saved to a stack of 8-bit im-

ages. The tracking framework proposed here was used

to recover the root systems from the image data. Seed

points were selected manually in the first image of each

stack to mark target objects and to initialise separate

trackers to each of the root systems. The time needed
to recover the root systems from the CT images de-
pends on the size of the data and the number of root
objects being tracked. The root systems in this experi-

ment were extracted within four to five hours on an In-
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(a.1) (b.1) (c.1) (d.1)

(a.2) (b.2) (c.2) (d.2)

Fig. 6: Extracted root systems of wheat grown in (a-b) loamy sand and (c-d) clay loam, (x.1) imaged for comparison

with a flatbed scanner and (x.2) the rendered root systems extracted from X-ray µCT data using α, β, γ and δ for

alignment reference. The root systems in (x.1) once extracted from the soil, lost their three-dimensional geometry

information, while still preserved in (x.2)

tel Core i7-3820 3.60GHz processor, using only a single

core due to the implementation. Since the root systems

are extracted by analysing one image slice at a time,

the allocation of memory is kept to a minimum, even

for large data volumes.

Though achieved here via visual tracking, the recov-

ery of plant root systems from X-ray µCT data is effec-
tively a segmentation task. Segmentation methods are

typically evaluated either by quantitative comparison

to a ground truth data set or by assessing their ability

to support some higher level task. When seeking to dis-

tinguish roots and soil, ground truth data is difficult to

obtain. The size and complexity of µCT scans of these

heterogeneous samples means that manually generated

ground truth is expensive and may not be definitive.

Similarly, though simulation of CT images is possible,

artificially generated data is not entirely representa-

tive of real root/soil samples [42]. The practical goal
of the work reported here is robust root phenotyping -
the recovery of quantitative measurements of root sys-

tem traits that can be used to assess and guide the de-

velopment of new, higher performing plant variations.

Assessment against a real phenotyping task requires a

large number of samples to be produced and analysed

against a specific biological question. The methods pre-

sented here are a key component of the University of

Nottingham’s recently opened Hounsfield Facility [43]

where such experiments are now underway. Description

of this work is, however, beyond the scope of the current

paper. For the present we demonstrate the performance

of the proposed techniques through a smaller pilot ex-

periment.

Figure 6 shows rendered images of the extracted

root systems of the individually grown wheat plants.

The average diameter of roots that were extracted from

the data was 15 to 30 pixels. After scanning the sam-

ples with X-ray µCT, they were root-washed free of

soil, placed on a water tray and imaged with a flatbed

scanner at 400dpi. The resulting two-dimensional im-

ages provide a reference for the 3D descriptions ex-

tracted from the X-ray data. Comparison of the fig-

ures shows that the architecture of the root systems

has been largely recovered, capturing its main shape

and structure. It has proven difficult to recover all of

the fine lateral roots of the root system at this resolu-
tion of scanning. While some might not be visible in
the image data, due to their small size, others might be
present, but not necessarily shown as connected due to

disruptions caused by small image irregularities.
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(a) (b) (c) (d)

Fig. 7: Extracted root systems of two interacting wheat plants highlighted in red and blue respectively

(a) (b) (c) (d)

Fig. 8: Extracted root systems of three interacting wheat plants (a) all together, (b) highlighting the first, (c) the
second and (d) the third root system

Figure 7 shows images rendered from the data ex-

tracted from a scan of two interacting wheat plants,

with the root systems highlighted in different colours.

Although roots came into contact with their neighbour-

ing root system, they were correctly associated with

their originating plant. Note that the proposed approach

is not limited to two interacting root systems within

a sample, but can be applied to an arbitrary number

of plants. That number, however, is restricted by the

size of column suitable for the X-ray µCT system used
and the ability of its X-ray gun to penetrate the sam-

ple. To demonstrate the method on a more sophisti-
cated dataset, we have prepared a slightly larger sam-
ple treated under the same conditions as the previous
ones, but comprising three wheat plants grown in a col-

umn 60mm in diameter. The scan was performed at

130keV and 200µA, taking 1440 projections at an expo-
sure time of 1,000ms, using a signal averaging of 4 and

1 skipping per projection. A 0.2mm Cu filter was used

to harden the beam. The sample was placed 220mm

away from the X-ray gun, resulting in a volume with

resolution of 27.5µm voxel size and an image stack of

2,100×2,100×2,260 voxels. The root systems from the
sample are shown in Figure 8 extracted. Due to the

larger sample size, the number of projections and ex-

posure time had to be increased to produce reasonable

image data, even though the amount of noise in the

data was higher compared to the other scans.

4.1 Spatial Characteristics

Motivation for the recovery of plant root systems from
X-ray µCT data comes from a pressing need to anal-

yse the spatial characteristics of root systems, partic-

ularly in relation to their neighbouring plant(s). Root

growth is driven by apical meristems, which are groups

of cells found close to root tips, formed either during

the embryonic development of primary roots or in the

primordium of lateral roots [44]. The root system’s fur-
ther exploration of the soil environment therefore de-
rives from existing root tips, which confines our atten-

tion.

To support the recovery of quantitative data on root

system traits and interactions, each root system’s skele-

ton is extracted from the volumetric segmentation data

produced by the methods presented above. An inverted

3D Manhattan distance map, beginning from the root
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(a) (b) (c) (d)

Fig. 9: Extracted root systems of two interacting wheat plants highlighted in red and blue respectively. The centre

of the spheres are determined by the root tips identified from the skeleton and the radius is determined by the

minimum distance to their neighbouring root system.

walls and extending over the root cross-sections, is com-
puted for each root system. The local minima of each

root cross-section are then determined and used to iden-

tify a set of control points which are input to a non-

parametric regression model using a linear piecewise

curve-fitting function. Optimal smoothing parameters

are found through cross-validation, finding a smooth
and continues representation of the root skeleton. Root
tips are found at the ends of the skeleton, where root

cross-sections are entirely enclosed by root walls (i.e.

where all distances of a root cross-section are equal to

zero). This ensures that root tips are labelled at the

outer layer of the roots and not within the roots, away

from their surface boundary. The result is a nested tree
structure expressed in Root System Markup Language
(RSML) format [45].

A vantage point (VP) tree [46] is generated for each

of the skeletonised root systems and used in conjunc-
tion with the detected root tips to find the minimum
distance from each of the tips to their neighbouring
root system(s). Plant root systems that compete for lo-

calised accumulated resources are expected to show an
increased number of close distances as the majority of
roots are likely to grow towards the same location. The

opposite is expected for root systems that avoid each

other’s presence and would mostly grow toward unoc-

cupied areas in the soil. A more substantive conclusion

on plant root competition for resources could be derived

from temporally acquired data, as it supports analysis
of when and how distances change over time. Analy-
sis of time series data and biologically-focused studies

of multiple root systems and their characteristic traits

will be the subject of future work; for the present we

demonstrate only the ability of our methods to provide

information on root interactions. To this end Figure

9 visualises the computed minimum distances between

root systems, represented as translucent spheres cen-

tred at root tips.

5 Discussion and Conclusions

We have presented a visual object tracking framework

for the extraction of plant root systems grown in soil

from X-ray µCT volume data, allowing the recovery of

both individual and multiple interacting plant root sys-

tems. The method proposed here uses a modified level

set framework that is guided by a greyscale intensity

distribution model to find the boundaries of root cross-

sections. The appearance model is updated to adapt to

variations in the greyscale intensity values of the target

object. The interface of a level set function is continu-

ously readjusted to locate the new position and outline

of the target objects in subsequent images. After fol-

lowing root cross-sections through the image stack, the

resulting information is used to reassemble the complete

root system of a plant.

In the presence of multiple root systems, multiple

trackers are deployed, but need to be able to keep their

targets distinguished from each other. This is challeng-

ing since root cross-sections are likely to share simi-

lar, if not identical, greyscale intensity distributions and

hence the appearance model used by the trackers is not
enough to keep the objects separate. Shape constraints
are therefore added when objects interact, and help lock
the trackers to their correct targets.

The method proposed here was tested on root sys-

tems of winter wheat Cordiale (Triticumaestivum L.),
using data showing both individual and multiple inter-
acting root systems. Results show that the proposed
technique can successfully recover and separate plant

root systems from each other.
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As more mature plant root systems are examined,

larger columns are needed to provide enough space for
the root system to explore the soil environment. When
using larger samples, scan resolution will be compro-

mised, resulting in more disjoint root segments. While

at present an adaptive appearance model is used by

the tracking framework, its motion model is still very

simplistic, relying on the assumption that root cross-
section will partially overlap in consecutive images. This
assumption might not hold if larger samples are used.

Hence a more sophisticated motion model will be re-

quired. Another compromise in using larger sample sizes

is that more fine lateral roots will become unidentifiable

due to the reduction in resolution. These issues will be

the subject of future reports.
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