140 research outputs found

    Geometrical dependence of low frequency noise in superconducting flux qubits

    Full text link
    A general method for directly measuring the low-frequency flux noise (below 10 Hz) in compound Josephson junction superconducting flux qubits has been used to study a series of 85 devices of varying design. The variation in flux noise across sets of qubits with identical designs was observed to be small. However, the levels of flux noise systematically varied between qubit designs with strong dependence upon qubit wiring length and wiring width. Furthermore, qubits fabricated above a superconducting ground plane yielded lower noise than qubits without such a layer. These results support the hypothesis that localized magnetic impurities in the vicinity of the qubit wiring are a key source of low frequency flux noise in superconducting devices.Comment: 5 pages, 5 figure

    Is current incremental safety assurance sound ?

    Get PDF
    International audienceIncremental design is an essential part of engineering. Without it, engineering would not likely be an economic, nor an effective, aid to economic progress. Further, engineering relies on this view of incrementality to retain the reliability attributes of the engineering method. When considering the assurance of safety for such artifacts, it is not surprising that the same economic and reliability arguments are deployed to justify an incremental approach to safety assurance. In a sense, it is possible to argue that, with engineering artifacts becoming more and more complex, it would be economically disastrous to not “do” safety incrementally. Indeed, many enterprises use such an incremental approach, reusing safety artifacts when assuring incremental design changes. In this work, we make some observations about the inadequacy of this trend and suggest that safety practices must be rethought if incremental safety approaches are ever going to be fit for purpose. We present some examples to justify our position and comment on what a more adequate approach to incremental safety assurance may look like

    Faithful Modeling of Product Lines with Kripke Structures and Modal Logic

    Get PDF
    Software product lines are now an established framework for software design. They are specified by special diagrams called feature models. For formal analysis, the latter are usually encoded by Boolean propositional theories. We discuss a major deficiency of this semantics, and show that it can be fixed by considering a product to be an instantiation process rather than its final result. We call intermediate states of this process partial products, and argue that what a feature model really defines is a poset of its partial products. We argue that such structures can be viewed as special Kripke structure that we call partial product Kripke structures, ppKS. To specify these Kripke structures, we propose a CTL-based logic, called partial product CTL, ppCTL. We show how to represent a feature model M by a ppCTL theory ML(M) (ML stands for modal logic) such that any ppKS satisfying the theory is equal to the partial product line determined by M. Hence, ML(M) can be considered a sound and complete representation of M. We also discuss several applications of the modal logic view in feature modeling, including refactoring of feature models

    Single-charge escape processes through a hybrid turnstile in a dissipative environment

    Get PDF
    We have investigated the static, charge-trapping properties of a hybrid superconductor---normal metal electron turnstile embedded into a high-ohmic environment. The device includes a local Cr resistor on one side of the turnstile, and a superconducting trapping island on the other side. The electron hold times, t ~ 2-20s, in our two-junction circuit are comparable with those of typical multi-junction, N >= 4, normal-metal single-electron tunneling devices. A semi-phenomenological model of the environmental activation of tunneling is applied for the analysis of the switching statistics. The experimental results are promising for electrical metrology.Comment: Submitted to New Journal of Physics 201

    Multiparty specification

    Get PDF
    This paper examines a formal model of how specifications can be constructed from multiple viewpoints and presents some tools to support this approach. The development of specifications is presented as a dialogue in which the viewpoints negotiate. establish responsibilities and cooperatively construct a specification. The model is illustrated by means of some small examples

    Long-term effects of tongue piercing — a case control study

    Get PDF
    The aim of this study was to evaluate tooth and periodontal damage in subjects wearing a tongue piercing (TP) in comparison to matched control subjects without tongue piercing. Members of the German Federal Armed Forces who had TP (group TP) and a matched control group (group C) volunteered to take part in the study. The time in situ, localization and material of TP were documented. Dental examinations included DMF-T, oral hygiene, enamel fissures (EF), enamel cracks (EC) and recessions. Statistical analysis was determined by χ2 test and the t test. Both groups had 46 male subjects (mean age 22.1 years). The piercings had been in situ for 3.8 ± 3.1 years. Subjects in the TP group had a total of 1,260 teeth. Twenty-nine subjects had 115 teeth (9.1%) with EF (67% lingual). In group C (1,243 teeth), 30 subjects had 60 teeth with EF (4.8%, 78% vestibular) (p < 0.01). Thirty-eight subjects belonging to group TP had EC in 186 teeth (15%). In group C, 26 subjects with 56 teeth (4.5%) were affected by EC (p < 0.001). Twenty-seven subjects in group TP had 97 teeth (7.7%) with recessions. Lingual surfaces of anterior teeth in the lower jaw were affected most frequently (74%). In group C, 8 subjects had 19 teeth (1.5%) with recessions (65% vestibular). Differences between the two groups were statistically significant (p < 0.001). Tongue piercing is correlated with an increased occurrence of enamel fissures, enamel cracks and lingual recessions. Patients need better information on the potential complications associated with tongue piercing

    Micellar structure and transformations in sodium alkylbenzenesulfonate (NaLAS) aqueous solutions: effects of concentration, temperature, and salt

    No full text
    We investigate the shape, dimensions, and transformation pathways of micelles of linear sodium alkylbenzenesulfonate (NaLAS), a common anionic surfactant, in aqueous solution. Employing Small Angle Neutron Scattering (SANS) and surface tensiometry, we quantify the effects of surfactant concentration (0.6–15 wt%), temperature (5–40 °C) and added salt (≤0.35 M Na2SO4). Spherical micelles form at low NaLAS (≤2.6 wt%) concentration in water, and become elongated with increasing concentration and decreasing temperature. Addition of salt reduces the critical micelle concentration (CMC) and thus promotes the formation of micelles. At fixed NaLAS concentration, salt addition causes spherical micelles to grow into cylindrical micelles, and then multilamellar vesicles (MLVs), which we examine by SANS and cryo-TEM. Above a threshold salt concentration, the MLVs reach diameters of 100 s of nm to few μm, eventually causing precipitation. While the salt concentrations associated with the micelle-to-cylinder transformation increase only slightly with temperature, those required for the cylinder-to-MLV transformation exhibit a pronounced, linear temperature dependence, which we examine in detail. Our study establishes a solution structure map for this model anionic surfactant in water, quantifying the combined roles of concentration, temperature and salt, at practically relevant conditions

    The multiple faces of self-assembled lipidic systems

    Get PDF
    Lipids, the building blocks of cells, common to every living organisms, have the propensity to self-assemble into well-defined structures over short and long-range spatial scales. The driving forces have their roots mainly in the hydrophobic effect and electrostatic interactions. Membranes in lamellar phase are ubiquitous in cellular compartments and can phase-separate upon mixing lipids in different liquid-crystalline states. Hexagonal phases and especially cubic phases can be synthesized and observed in vivo as well. Membrane often closes up into a vesicle whose shape is determined by the interplay of curvature, area difference elasticity and line tension energies, and can adopt the form of a sphere, a tube, a prolate, a starfish and many more. Complexes made of lipids and polyelectrolytes or inorganic materials exhibit a rich diversity of structural morphologies due to additional interactions which become increasingly hard to track without the aid of suitable computer models. From the plasma membrane of archaebacteria to gene delivery, self-assembled lipidic systems have left their mark in cell biology and nanobiotechnology; however, the underlying physics is yet to be fully unraveled

    Planetary Defense Ground Zero: MASCOT's View on the Rocks - an Update between First Images and Sample Return

    Get PDF
    At 01:57:20 UTC on October 3rd, 2018, after 3½ years of cruise aboard the JAXA spacecraft HAYABUSA2 and about 3 months in the vicinity of its target, the MASCOT lander was separated successfully by from an altitude of 41 m. After a free-fall of only ~5m51s MASCOT made first contact with C-type near-Earth and potentially hazardous asteroid (162173) Ryugu, by hitting a big boulder. MASCOT then bounced for ~11m3s, in the process already gathering valuable information on mechanical properties of the surface before it came to rest. It was able to perform science measurements at 3 different locations on the surface of Ryugu and took many images of its spectacular pitch-black landscape. MASCOT’s payload suite was designed to investigate the fine-scale structure, multispectral reflectance, thermal characteristics and magnetic properties of the surface. Somewhat unexpectedly, MASCOT encountered very rugged terrain littered with large surface boulders. Observing in-situ, it confirmed the absence of fine particles and dust as already implied by the remote sensing instruments aboard the HAYABUSA2 spacecraft. After some 17h of operations, MASCOT‘s mission ended with the last communication contact as it followed Ryugu’s rotation beyond the horizon as seen from HAYABUSA2. Soon after, its primary battery was depleted. We present a broad overview of the recent scientific results of the MASCOT mission from separation through descent, landing and in-situ investigations on Ryugu until the end of its operation and relate them to the needs of planetary defense interactions with asteroids. We also recall the agile, responsive and sometimes serendipitous creation of MASCOT, the two-year rush of building and delivering it to JAXA’s HAYABUSA2 spacecraft in time for launch, and the four years of in-flight operations and on-ground testing to make the most of the brief on-surface mission
    corecore