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Abstract

Software product lines are now an established framework for soft-
ware design. They are specified by special diagrams called feature
models. For formal analysis, the latter are usually encoded by Boolean
propositional theories. We discuss a major deficiency of this semantics,
and show that it can be fixed by considering a product to be an instan-
tiation process rather than its final result. We call intermediate states
of this process partial products, and argue that what a feature model
really defines is a poset of its partial products. We argue that such
structures can be viewed as special Kripke structure that we call partial
product Kripke structures, ppKS. To specify these Kripke structures,
we propose a CTL-based logic, called partial product CTL, ppCTL. We
show how to represent a feature model M by a ppCTL theory ML(M)
(ML stands for modal logic) such that any ppKS satisfying the theory
is equal to the partial product line determined by M . Hence, ML(M)
can be considered a sound and complete representation of M . We also
discuss several applications of the modal logic view in feature modeling,
including refactoring of feature models.
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1 Introduction

The software product line approach is well-known in the software industry.
Products in a product line (PL) share some common mandatory features,
and differ by having some optional features that allow the user (or developer)
to configure the product the user wants (e.g., MS Office, a Photoshop, or
the Linux kernel). Instead of producing a multitude of separate products,
the vendor designs a single PL encompassing a variety of products, which
results in a significant reduction in development time and cost [32]. Methods
of specifying PLs and checking the validity of a PL against a specification is
an active research area.
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The most common method for designing a PL is
to build a feature model (FM); below we will often say
just model. A toy example is shown in the inset figure.
Model M1 says that a (root feature called) car must have
an engine and brakes (black bullets denote mandatory
subfeatures), and brakes can optionally (note the hollow
bullet) be equipped with an anti-skidding system. The model specifies a PL
consisting of two products: P = {car, eng, brakes} and P ′ = P∪{abs}.

As industrial models may be based on thousands of features inter-related
in complex ways [27], they require tools for their management and analysis,
and thus should be represented by formal objects processable by tools. A
common approach is to consider features as atomic propositions, and view
a model as a theory in the Boolean propositional logic (BL), whose valid
valuations are to be exactly the valid products defined by the model [3]. For
example, model M1 represents the BL theory (i.e., a set of Boolean propo-
sitional formulas) BL(M1) = {car} ∪ {eng→car, brakes→car, abs→brakes} ∪
{car→eng, car→brakes}: the first three implications encode subfeature de-
pendencies (a feature can appear in a product only if its parent is in the
product), the last two implications encode the mandatory dependencies
between features (if a parent of a mandatory feature is included in the
product, then it must included too), and the root feature must be always
included in the product. We call this semantics of models Boolean.

The Boolean semantics gave rise to a series of prominent applications for
analysis of industrial size PLs [14, 19, 37]. However, it has an almost evident
drawback of misrepresenting models’ hierarchical structure. Indeed, the sec-
ond inset figure shows a model M2 that is essentially different from M1 (and
is, in fact, pathological), but has the same set of products, {P, P ′}, deter-
mined by an equivalent Boolean theory BL(M2) = {car→eng, brakes→eng,
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abs→eng}∪{eng→car, eng→brakes} ∼= BL(M1): only grouping of implica-
tions has changed, but it is immaterial for Boolean logic. The core of the
problem is that two different dependencies (the parent feature and a manda-
tory subfeature) are similarly encoded by implication, and hence are not
semantically distinguished.
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M2 

We are not the first to have noticed this drawback,
e.g., it is mentioned in [37] (where models’ semantics not
captured by Boolean logic is called ontological), and many
researchers and practitioners in the field are probably
aware of the situation. Nevertheless, as far as we know,
no alternative to the Boolean logic semantics of feature
modeling has been proposed in the literature, which we
think is theoretically and conceptually unsatisfactory. Even more importantly,
inadequate logical foundations for feature modeling hinder practical analyses:
as important information contained in models is not captured by their
BL-encoding, this information is either missing from analyses, or treated
informally, or hacked in an ad hoc way. In a sense, this is yet another
instance of a known software engineering problem, when semantics is hidden
in the application code rather than explicated in the specification, with all
its negative consequences for software testing, debugging, maintenance, and
communication between the stakeholders.

Our main observation is that the key notion of feature modeling—a
product built from features—should be considered as an instantiation process
rather than its final result. We call intermediate states of this process partial
products, and argue that what a model M really specifies is a partially
ordered set of partial products, which we call a partial product line (PPL)
generated by M . The commonly considered products of M (we call them
full) only form a subset of M ’s PPL. We then show that any PPL can
be viewed as an instance of a special type of Kripke structures, which we
axiomatically define and call a partial product Kripke structure (ppKS). The
latter are specifiable by a suitable version of modal logic, which we call
partial product CTL (ppCTL), as it is basically a fragment of CTL enriched
with a constant modality that only holds in states representing full products.
We show that any model M can be represented by a ppCTL (modal) theory
ML(M) accurately specifying M ’s intended semantics: for any ppKS K,
K |= ML(M) iff K is equal to M ’s PPL, and hence ML(M) is a sound and
complete representation of the model. Then we can replace models by the
respective ppCTL-theories, which are well amenable to formal analysis and
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automated processing.

In a broader perspective, we want to show that behavioural foundations
of feature modeling are mathematically interesting, and worth the attention
of the Theoretical Computer Science community. We will describe several
open problems that we believe are mathematically interesting and practically
useful. Especially intriguing are connections to concurrency modeling. In
fact, PLs can be seen as a special interpretation of configuration structures
[40]: features are events, partial products are configurations, and PPLs
are configuration structures; feature models can then be seen as a far
reaching generalization of Winskel’s event structures and other formalisms
for specifying dependencies between events. It appears that the syntactical
aspects of specifying concurrency (including transaction mechanisms), i.e.,
having a convenient and suggestive notation suitable for practitioners, have
not received much attention in concurrency modeling. This is where we
believe feature modeling can make a non-trivial contribution. We will discuss
some details in Sect. 8.1. On the other hand, we would like to have the
paper readable by a feature modeling researcher, and to convince her that
the logic of models is modal rather than Boolean. Therefore, we pay special
attention to the motivation of our framework: we want first to validate the
mathematical framework, and only then explore it formally.

This paper extends our previous shorter paper [16]. Here we provide the
proofs of our results that have been omitted in [16]: we explicate the structure
of modal theories extracted from models, and present detailed proofs following
this structure. Moreover, we discuss bisimulation and simulation relations
on ppKSs. We also discuss refactoring of feature models in the entirely new
Sect. 6, and show that the notion of PPL, i.e., ppKS semantics for feature
models, captures not only constraints embodied in models, but their feature
hierarchy as well (the latter was always a challenging issue for the Boolean
semantics [37]). Therefore we called the ppKS semantics faithful. We have
also added an analysis of a special version of ppKS semantics, in which
the i2c-principle is not assumed. The paper also provides a more complete
review of the related work, and extends the future work section.

Our plan for the paper is as follows. Section 2 is motivational: we
describe the basics of feature modeling, and show how the deficiency of
the Boolean semantics can be fixed by introducing partial products and
transitions between them. In Sect. 3, the notions of models and PPLs they
generate are formalized. In Sect. 4, we introduce the notion of ppKSs as
immediate abstraction of PPLs, and ppCTL as a language to specify ppKSs’
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properties. In this section, we also discuss bisimulation and simulation
relations on ppKSs and show that they are equal to identity and substructure
relations over ppKSs, respectively. We show, step-by-step, how to translate
a model into a ppCTL-theory, and prove our soundness and completeness
theorems in Sect. 5. Sect. 6 discusses the notion of refactoring of feature
models by using bisimulation relation on their PPLs. An important result of
the study in this section is that PPLs are faithful to the semantics of models.
In Sect. 7, we discuss some practical applications. Related work is discussed
in Sect. 8, and future work in Sect. 9. Section 10 concludes. Appendices
A.1 and A.2 respectively show complete BL and ppCTL encodings of our
running example in Fig. 1.

2 Feature Models and Partial Product Lines

This section aims to motivate the formal framework we develop in the paper.
In Sect. 2.1, we discuss the basics of feature modeling, and in Sect. 2.2 we
introduce partial products and PPLs. We begin with PPLs generated by
simple models, which can be readily explained in lattice-theoretic terms.
Then (Sect. 2.3) we show that PPLs generated by complex models are more
naturally, and even necessarily, to be considered as transition systems.

2.1 Basics of Feature Modeling

A model is a graphical structure presenting a hierarchical decomposition of
features with some possible crosscutting constraints (CCs) between them.
Figure 1 gives an example. It is a tree of features, whose root names the
product (’car’ in this case), and edges relate a feature to its subfeatures.
Edges with black bullets denote mandatory subfeatures: every car must
have an eng (engine), a gear, and brakes. The hollow-ended edge says that
brakes can optionally be equipped with abs. Black angles denote OR-groups:
an engine can be either gas (gasoline), or elec (electric), or both. Hollow
angles denote XOR-groups (eXclusive OR): a gear is either mnl (manual) or
atm (automatic) but not both; it must be supplied with oil as dictated by
the black-bullet edge. The ×-ended arc says that an electric engine cannot
be combined with a manual gear, and the arrow-headed arc says that an
automatic gear requires ABS. According to the model, the set of features
{car, eng, gas, gear, mnl, oil, brakes} is a valid product, but replacing the
gasoline engine by electric, or removal of oil, would make the product invalid.
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In this way, the model compactly specifies seven valid products amongst the
set of 29 possible combinations of 9 non-root features (the root is always
included), and exhibits dependencies between choices.

car	

eng	 gear	

mnl	 atm	gas	 elec	 abs	

brakes	

✕	 ✕	
oil	

Figure 1: An model

In the Boolean view of feature modeling, a model is a representation
of a BL theory. For example, the theory encoded by the model in Fig. 1
consists of a set of implications denoting subfeature dependencies and unary
mandatory dependencies as explained in the introduction, plus three im-
plications denoting grouped mandatoriness: {eng→gas ∨ elec, gear→mnl ∨
atm, mnl∧atm→⊥} (with ⊥ denoting False), plus two implications encoding
CCs: {elec ∧ mnl→⊥, atm→abs}. Since the root must be always included
in a valid product, we also add the theory car. However, as we saw in the
Introduction, a BL encoding is deficient.

2.2 Partial Product Lines: Products as Processes

What is lost in the BL-encoding is the dynamic nature of the notion of
products. A model defines not just a set of valid products but the very
way these products are to be (dis)assembled step by step from constituent
features. Correspondingly, a PL appears as a transition system initialized at
the root feature (say, car for model M1 in Fig. 2a) and gradually progressing
towards fuller products (say, {car} → {car, eng} → {car, eng, brakes} or
{car} → {car, brakes} → {car, brakes, abs} → {car, brakes, abs, eng}); we call
such sequences instantiation paths.

The graph in Fig. 2(b1) specifies all possible instantiation paths for
M1 (c, e, b, a stand for car, eng, brakes, abs, resp., to make the figure
compact). Nodes in the graph denote partial products, i.e., valid products
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Figure 2: From models to PPLs: simple cases

with, perhaps, some mandatory features missing: for example, product {c,e}
is missing feature b, and product {c,b} is missing feature e. In contrast,
products {e} and {c,a} are invalid as they contain a feature without its
parent; such products do not occur in the graph. As a rule, we will call
partial products just products. Product {c,e,b} is full (complete) as it has all
mandatory subfeatures of its member-features; nodes denoting full products
are framed. (Note that product {c,e,b} is full but not terminal, whereas
the bottom product is both full and terminal.) Edges in the graph denote
inclusions between products. Each edge encodes adding a single feature to
the product at the source of the edge; in text, we will often denote such edges
by an arrow and write, e.g., {c} −→e {c, e}, where the subscript denotes the
added feature. We call the instantiation graph described above the partial
product line determined by model M1, and write PPL1. In a similar way,
the PPL of the second model, PPL2, is built in Fig. 2(b2). We see that
although both models have the same set of full products (i.e., are Boolean
semantics equivalent), their PPLs are essentially different both structurally
(6 nodes and 7 edges in PPL1 versus 8 nodes and 12 edges in PPL2), and
in the content of products (e.g., products {c} and {c,b} present in PPL1

but absent in PPL2, whereas {e} and {e,a} are present in PPL2 but absent
from PPL1). This essential difference between PPLs properly reflects the
essential difference between the models.
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2.3 Partial Product Lines: From lattices to transition sys-
tems

Generating PPLs PPL1,2 from models M1,2 in Fig. 2 can be readily explained
in lattice-theoretic terms. Let us first forget about mandatory bullets, and
consider all features as optional. Then both models are just trees, and
hence are posets, even join semi-lattices (joins go up in feature trees). Valid
products of model Mi are upward-closed sets of features (filters), and form
a lattice (consider Fig. 2(b1,b2) as Hasse diagrams), whose join is set union,
and meet is intersection. If we freely add meets (go down) to posets M1,2

(eng ∧ brakes etc.), and thus freely generate lattices L(Mi), i = 1, 2, over the
respective posets, then lattices L(Mi) and PPLi will be dually isomorphic
(Birkhoff duality).

The forgotten mandatoriness of some features appears as incompleteness
of some objects; we call them proper partial products. Partial products
closed under mandatoriness are full. Thus, PPLs of simple models such as in
Fig. 2(a) are their filter lattices with distinguished subsets of full products.
In the next section, we will argue that this lattice-theoretic view does not
work for more complex models.

Figure 3 (left) shows a fragment of the model in Fig. 1, in which, for
uniformity, we have presented the XOR-group as an OR-group with a new
CC added to the tree (note the ×-ended arc between mnl and atm)3. To
build the PPL, we follow the idea described above, and first consider M3 as
a pure tree-based poset with all the extra-structure (denoted by black bullets
and black triangles) removed. Figure 3 (right) describes a part of the filter
lattice as a Hasse diagram (ignore the difference between solid and dashed
edges for a while); to ease reading, the number of letters in the acronym for
a feature corresponds to its level in the tree, e.g., c stands for car, en for eng
etc.

Now let us consider how the additional structure embodied in the model
influences the PPL. Two CCs force us to exclude the bottom central and
right products from the PPL; they are shown in brown-red and the respective
edges are dashed. To specify this lattice-theoretically, we add to the lattice
of features a universal bottom element ⊥ (a feature to be a subfeature of any
feature), and write two defining equations: ele∧mnl = ⊥ and mnl∧ atm = ⊥.
Then, in the filter lattice, the formal down-join of products {c,en,ele,ge} and
{c,ge,mnl,en} “blow up” and become equal to the set of all features (“False

3Recall that an ×-ended arc between two incomparable features denotes an exclusive
constraint CC between them.
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Figure 3: From models to PPLs: Complex case

implies everything”). The same happens with the other pair of conflicting
products.

Next we consider the mandatoriness structure of M3 (given by black
bullets and triangles). This structure determines a subset of the PPL
consisting of full products (not shown in Fig. 3) as we discussed above. In
addition, mandatoriness affects the set of valid partial products as well.
Consider the product P = {c, en, ge} at the center of the diagram. The left
instantiation path leading to this product, {c} −→en {c, en} −→ge P is not
good because gear was added to engine before the latter is fully assembled
(a mandatory choice between being electric or gasoline, or both, has still not
been made). Jumping to another branch from inside of the branch being
processed can be considered a poor design practice that the modeler may
want to prohibit by declaring the corresponding transition as invalid. Then
transition {c, ge} −→en P should be also invalid as engine is added before
gear instantiation is completed. Hence, product P becomes unreachable,
and should be removed from the PPL. (In the diagram, invalid edges are
dashed (red with a color display), and the products at the ends of such edges
are invalid too.)

Thus, a reasonable requirement for the instantiation process is that
processing a new branch of the feature tree should only begin after processing
of the current branch has reached a full product. We call this requirement
instantiate-to-completion (i2c) by analogy with the run-to-completion trans-
action mechanism in behavior modeling (indeed, instantiating a branch of a
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feature tree can be seen as a transaction).

car ︎

eng ︎ gear ︎

oil︎

car ︎

car,eng ︎ car,gear ︎

car,gear,oil ︎car,eng,gear ︎

M4 ︎
PPL4 ︎

car,eng,gear,oil ︎

Figure 4: Exclusion of an edge due to i2c

Importantly, i2c prohibits transitions rather than products, and it is
possible to have a product with some instantiation paths into it being legal
(and hence the product is legal as well), but some paths to the product being
illegal. Figure 4 shows a simple example with model M4 and its PPL. In
the latter, the “diagonal” transition {car, gear}−→{car, eng, gear} violates
i2c and must be removed. However, its target product is still reachable
from {car, eng} as the latter is a fully instantiated product. Hence, the only
element excluded by i2c is the diagonal dashed transition.

Note that the i2c principle may substantially reduce the complexity
of the PPL for a given model, as it may excludes many transitions and/or
states from the PPL, without loss of any information of the model. It follows
from this observation that a PPL can be richer than its lattice of partial
products (transition exclusion cannot be explained lattice-theoretically), and
transition systems/Kripke structures and modal logic are needed.

Moreover, even if all inclusions are transitions, Boolean logic is too
poor to express important semantic properties embodied in PPLs. For
example, we may want to say that every product can be completed to a full
product, and every full product is a result of such a completion. Or, we
may want to say that if a product P has some feature f , then in some of its
partial completions P ′, a feature g should appear. Or, if a product P has a
feature f , then any full product completing P must have a feature g, and
so on. Specification of such properties needs some version of modal logic.
In general, since modal logic is more expressive than Boolean, it provides a
more expressive language for cross-cutting constraints over feature models.
Later in Sect. 7, we will provide an example, in which some practically
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reasonable constraints cannot be expressed in Boolean logic and require a
modal specification.

Thus, the transition relation is an important (and independent) compo-
nent of the general PPL structure. As soon as transitions become first-class
citizens, it makes sense to distinguish full products by supplying them, and
only them, with identity loops. That is, each framed product in our figures
describing PPLs, should be assumed to have a loop transition to itself. Such
loops do not add (nor remove) any feature from the product, and have a clear
semantic meaning: the instantiation process can stay in a full product state
indefinitely. This way, the transition relation in a PPL would be left-total,4

which makes PPLs standard Kripke structures used for the semantics of
CTL, in which transition relations must be left-total.

3 Feature models and their PPLs: formally

In Sect. 3.1, we give a formal definition of a (feature) model that supports all
our work in the paper. Sect. 3.2 defines a Boolean logic encoding of a model,
and the corresponding notions of a full and a partial products. Sect. 3.3
formally defines a PPL as a transition systems.

3.1 Feature Models

Several versions of feature models and their Boolean semantics are uniformly
formalized in [36]. We develop yet another formalization of tree-based models
as a quadruple of components, which is basically equivalent to the above, but
our choice of the components provides feature models with a structure that
supports all our work in the paper. Particularly, this structure is important
for translating models into Boolean and modal theories, and for specifying
their relationships and refactoring, and hence facilitating reverse engineering
of models from product lines. Finally, we will need this structure in our
future work on feature model management, for which we will need to define
morphisms between models

Typical models are trees of features with some extra structures, like in
Fig. 1. In our framework, mandatory features and XOR-groups are derived
constructs. A mandatory feature can be seen as a singleton OR-group. An
XOR-group can be expressed by an OR-group with some additional exclusive
constraints between its elements.

4A relation R ⊆ A×B is left-total if ∀a ∈ A,∃b ∈ B: (a, b) ∈ R
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Definition 1 (Feature Diagrams) A feature diagram (FD) is a pair TOR =
(T,OR) of the following components.

(i) T = (F, r, ↑) is a tree whose nodes are features: F denotes the set
of all features, r ∈ F is the root, and function ↑ maps each non-root feature

f ∈ F−r def
= F \ {r} to its parent f↑. The inverse function that assigns to

each feature the set of its children (called subfeatures) is denoted by f↓; this
set is empty for leaves. It is easy to see that the set of f ’s siblings is the set
(f↑)↓ \ {f}. The set of all ancestors and all descendants of a feature f are
denoted by f↑↑ and f↓↓, respectively.

Features f, g are called incomparable, f#g, if neither of them is a
descendant of the other. We write #2F for the set {G ⊂ F : G 6=
∅ and f#g for all f, g ∈ G} ⊂ 2F .

(ii) OR is a function that assigns to each feature f ∈ F a set OR(f) ⊂
2f↓ (possibly empty) of disjoint subsets of f ’s children called OR-groups.
If a group G ∈ OR(f) is a singleton {f ′} for some f ′ ∈ f↓, we say that
f ′ is a mandatory subfeature of f . For example, in Fig. 1, OR(gear) =
{{mnl, aut}, {oil}}, and oil is a mandatory subfeature of gear.

Elements in set O(f)
def
= f↓ \

⋃OR(f) are called optional subfeatures of
f . For example, in Fig. 1, OR(brakes) = ∅, and abs is an optional subfeature
of brakes. 2

An model is a feature diagram plus some possible exclusive and/or inclusive
crosscutting constraints:

Definition 2 (Feature Models) A feature model (model) is a triple M =
(TOR, EX , IN ) with TOR a feature diagram as defined above, and two
additional components defined below:
(i) EX ⊆ #2F is a set of exclusive dependencies between features. For
example, in Fig. 1, EX = {{elec,mnl}, {mnl, atm}}.
(ii) IN ⊂ #2F × #2F is a set of inclusive dependencies between fea-
tures. A member of this set is interpreted (and written) as an implication
(f1∧ . . .∧fm) → (g1∨ . . .∨gn). For example, feature model in Fig. 1 has
IN = {atm→ abs}.

Exclusive and inclusive dependencies are also called cross-cutting con-
straints (CCs).5 2

Thus, an model is a tree of features T endowed with three extra
structures OR, EX , and IN . We will sometimes write it as a quadru-

5It is easy to see that any Boolean constraint/formula can be expressed as a conjunction
of our EX and IN dependencies.
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ple M = (T,OR, EX , IN ). If needed, we will subscript M ’s components
with index M , e.g., write FM for the set of features F . Note that an model
is a purely syntactic object contrary to the common usage of term ‘model’
in logic. The class of all feature models over the same set of features F is
denoted by FM(F ).

3.2 Propositional encoding of models

We will first present the general idea in Sect. 3.2.1, then show how to modify
it to manage the major drawback of the standard Boolean encoding in
Sect. 3.2.2, and finally discuss a propositional encoding of i2c in Sect. 3.2.3

3.2.1 The approach

A common approach to formalizing the PL (of full products) of a given
model is to use Boolean propositional logic [3]. Features are considered as
atomic propositions, and dependencies between features are specified by
logical formulas. For example, if a feature f ′ is a subfeature of feature f ,
we have an implication f ′ → f (if a product has feature f ′, it must have
feature f as well). If {g1, g2} is an OR-group of f ’s subfeatures, we write
f → (g1∨g2); if, in addition, features g1, g2 are mutually exclusive, we write
g1∧g2 → ⊥. In this way, given a model M = (T,OR, EX , IN ), each of its
four components gives rise to a respective propositional theory (i.e.,a set of
formulas) as shown in the upper four rows of Table 1: later we will discuss
the four theories in detail and explain the !-superscripts.6

Together these theories constitute theory BL!(M), and a set of features
P is a legal full product for M iff P |= BL!(M). Here |= denotes the standard
satisfaction relation between a set of atomic propositions (features in our
context) P and a Boolean theory Ψ: we define P |= Ψ iff P |= ψ for all ψ∈Ψ,
and for a Boolean formula ψ = ψ(f1, . . . , fn) built over atomic propositions
f1,...fn, we define P |= ψ iff ψ(f̄1, . . . , f̄n) = 1, where f̄i = 1 for fi ∈ P and
f̄i = 0 otherwise.7

Since publishing the seminal paper [27], this propositional view of
feature modeling became common and has been used in both theoretical

6∨G and
∧

G represent the conjunction and the disjunction of all formulas in a set of
formulas G.

7 Later we will also need semantic consequence between theories, Ψ1 |= Ψ2, which
means P |= Ψ2 for any P |= Ψ1. Also note that P |= Ψ is equivalent to the universal
validity of the formula

∧{p1, . . . , pn,¬q1, . . .¬qk} → ∧
Ψ, where propositions qj are all

those that do not occur into P , and ¬qj denotes negation of qj .
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and practice-oriented work [3, 14,37].

Table 1: Boolean theories extracted from a model M = (TOR, EX , IN )

(1) BL(T ) = {> → r} ∪ {f ′ → f : f ∈ F, f ′ ∈ f↓}
(2) BL(EX ) = {∧G→ ⊥ : G ∈ EX}
(3!) BL!(OR) = {f → ∨

G : f ∈ F,G ∈ OR(f)}
(1+3!) BL!(TOR) = BL(T ) ∪ BL!(OR)

(4!) BL!(IN ) = {∧G→ ∨
G′ : (G,G′) ∈ IN}

(all!) BL!(M) = BL(T ) ∪ BL(EX ) ∪ BL!(OR) ∪ BL!(IN )

(3) BLi2c(TOR) =
{
f ∧ g → (

∧
BL!(T f

OR)) ∨ (
∧
BL!(T g

OR)) : f↑ = g↑
}

(all) BL(M) = BL(T ) ∪ BL(EX ) ∪ BLi2c(TOR)

3.2.2 Enabling vs. Causality, or Full vs. Partial Products

The encoding above has a drawback that we discussed in the Introduction:
two different relationships between features (being a subfeature, f ′ → f , and
being a mandatory subfeature, f → f ′) are similarly encoded. This implies
f ↔ f ′ for any mandatory subfeature f ′ of f , and leads to misrepresentation
of the hierarchical structure of a model. With a more refined approach, the
two relationships should be represented differently.

The subfeature relationship is fundamental, and any product having a
subfeature f ′ but missing its superfeature f should be considered ill-formed;
we can say that superfeature f enables its subfeature f ′ and all reasonable
products must respect enabling. In contrast, if f ′ is a mandatory subfeature
of f , a product having f but missing f ′ is just incomplete rather than
ill-formed. We can say that feature f causes f ′ so that partial products
violating causality are possible, and only full products must respect it.8

Thus, we have two Boolean theories for the same model M . One is the
theory of partial products and another is the theory of full products. The
theory of partial products is denoted by BL(M) (for now without the bang

8Our choice of terms ’enabling’ and ’causal’ for the two types of structural dependencies
is somewhat arbitrary, and was partly motivated by similarities between feature and event
modeling discussed later in Sect. 8.1.
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superscript): it encodes the basic structural dependencies a well-formed
partial product must satisfy, and thus defines all partial products. This
theory consists of three components as specified in row (all) in Table 1:
BL(T ) is the BL-encoding of subfeature dependencies (row (1)), BL(EX )
is the BL-encoding of exclusive dependencies (row (2)), and in Sect. 3.2.3
we consider yet another ingredient—the BL encoding of the i2c-condition,
BLi2c(TOR).

The other propositional theory, M ’s full product theory BL!(M), consists
of four components. Two components are BL(T ) and BL(EX ) as above, the
third one is the BL-encoding BL!(OR) of the mandatoriness dependencies
embodied in the OR-structure (row (3!)), and the fourth is a Boolean en-
coding BL!(IN ) of the inclusive crosscutting constraints (row(4!)), which
we treat as mandatory for only full products rather than affecting instan-
tiation (i.e., as causal rather than enabling). We also consider the theory
BL!(TOR) as the union of BL(T ) and BL!(OR). With a more refined ap-
proach to feature modeling, a crosscutting constraint should be labeled as
either causal or enabling, but with the current feature modeling practice,
crosscutting constraints are not labeled and we thus consider them as causal,
i.e., constraining full products only.

Definition 3 (Full Products) A full product over an model M = (TOR,
EX , IN ) is a set of features P ⊆ F satisfying theory BL!(M) defined in
Table 1 in row (all!). The set of all full products is called M ’s full product
set and denoted by FPM . Thus, FPM = {P ⊆ F : P |= BL!(M)}. 2

The definition above is equivalent to the standard one, except that we use
the term full product rather than product. To define partial products, we
need to introduce one more ingredient of the instantiation theory.

3.2.3 Instantiate to Completion and Transient Conflicts.

Consider once again PPL3 in Fig. 3, from which product {c, en, ge} is
excluded as violating the i2c principle. Note that in order to specify this
exclusion propositionally, we cannot declare that features en and ge are
mutually exclusive and write {en∧ge→ ⊥} because further down the lattice
they are combined in product {c, en, ele, ge} below {c, en}, and in product
{c, ge,mnl, en} below {c, ge} as well. In other words, the conflict between
features en and ge is transient rather than permanent, and its propositional
specification is not trivial. We solve this problem as follows.
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Definition 4 (Induced Subtrees) Let TOR = (T,OR) be a feature di-
agram over a set of features F , and f ∈ F . A feature subtree induced
by f is a pair T f

OR = (T f ,ORf ) with T f being the tree under f , i.e.,

T f def
= (f↓↓ ∪ {f}, f, ↑), and mapping ORf is inherited from OR, i.e., for

any g ∈ f↓↓, ORf (g) = OR(g). 2

The theory formalizes the idea that if a valid product contains two incompa-
rable features, then at least one of these features must be fully instantiated
within the product. Now we can specify theory BLi2c(TOR) as shown in row
(3) in Table 1.

Definition 5 (Partial Products) A partial product over modelM = (TOR,
EX , IN ) is a set of features P ⊆ F satisfying the instantiation theory BL(M)
specified in row (all) in Table 1. (Recall that a full product is a set of features
satisfying theory BL!(M).) We denote the set of all partial products by
PP(M) or sometimes PPM . Thus, PP(M) = {P ⊆ F : P |= BL(M)}.

We will often call partial products just products. 2

The following proposition is obvious.

Proposition 1 For any model M and any product P , P � BL!(M) ⇒
P � BL(M), i.e., BL!(M) |= BL(M). Hence, full products as defined in
Definition 3 form a subset of partial products, FP(M) ⊆ PP(M). 2

Appendix A.1 represents the Boolean logic theory of the whole model in
Fig. 1. Note that transition exclusion discussed in Sect. 2.3 cannot be
explained with Boolean logic and needs a modal logic; we will give a suitable
logic and show how it works in Sect. 5.

3.3 PPLs as Transition Systems

In this section, we consider how partial products are related. The problem
we address is when a valid product P can be augmented with a feature
f /∈ P so that product P ′ = P∪{f} is valid as well. We then write P −→ P ′

and call the pair (P, P ′) a valid (elementary or step) transition.

Two necessary conditions are obvious: the parent f↑ must be in P , and
f should not be in conflict with features in P , that is, P ′ |= BL(T )∪BL(EX ).
Compatibility with i2c is more complicated: we need to formalize relative
completeness of P in its branch.
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Definition 6 (Relative fullness) Given a product P and a feature f /∈ P ,
the following theory (continuing the list in Table 1) is defined:

(3)P,f BLi2c(P, f)
def
=
⋃
{BL!(T g

OR) : g ∈ P ∩ (f↑)↓}

where T g
OR denotes the subtree induced by feature g as described in Defini-

tion 4. (Note that set P ∩(f↑)↓ may be empty, and then theory BLi2c(P, f) is
also empty.) We say P is fully instantiated with respect to f if P |= BLi2c(P, f).
2

For example, it is easy to check that for model M4 in Fig. 4, for product
P1={car, eng} and feature f1 = gear, we have P1 |= BLi2c(P1, f1) while
for P2={car, gear} and f2 = eng, P2 2 BLi2c(P2, f2) because BL!(T gear

OR ) =
{gear→ oil} and P2 2 {gear→ oil}.

Now, we are at the point where we can give a formal definition for valid
transitions:

Definition 7 (Valid Transitions) Let P be a product. Pair (P, P ′) is a
valid transition, we write P −→ P ′, iff one of the following two possibilities
(a), (b) holds.

(a) P ′ = P ] {f} for some feature f /∈ P such that the following
three conditions hold: (a1) P ′ |= BL(T ), (a2) P ′ |= BL(EX ), and (a3)
P |= BLi2c(P, f).

(b) P ′ = P and P is a full product.
That is, P −→ P ′ iff

(
(a1) ∧ (a2) ∧ (a3)

)
∨ (b). 2

For example, the dashed (red) transition in Fig. 4 is not valid because
P = {car, gear} 6|= BLi2c(P, eng). The following result is important.

Theorem 1 If P is a valid partial product and P −→ P ′, then P ′ is a valid
partial product.

Proof: If P ′ = P , the proposition is obvious. Consider now the case of
P ′ = P ] {f} with P ′ |= BL(T )∪BL(EX ) and P |= BLi2c(P, f). We need to
prove that P ′ |= BLi2c(TOR). Let g ∈ P be an arbitrary feature with g↑=f↑,
i.e., g ∈ P ∩ (f↑)↓. By definition of relative fullness, if P |= BLi2c(P, f), then
definitely P |= BL!(T g

OR) (one of the union’s components). This implies
P ′ |= BL!(T g

OR), and hence P ′ |= ⋃{
BL!(T g

OR): g ∈ P, g↑=f↑)
}

. The

above statement, along with P |= BLi2c(TOR), implies that P ′ |=
{
f∧g →

(
∧
BL!(T f

OR))∨(
∧
BL!(T g

OR)) 2

Finally, we formalize PPLs as follows.
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Definition 8 (Partial Product Lines) Let M = (TOR, EX , IN ) be an
model. The partial product line (PPL) determined by M is a triple P(M) =
(PPM ,−→M , IM ) with the set PPM of partial products given by Definition 5,
transition relations −→M given by Definition 7 (so that full products, and
only them, are equipped with self-loops), and the initial product IM = {r}
consisting of the root feature. 2

Below in Sect. 6, we show that PPLs provide a faithful semantics for
models, which captures both the products and the tree-structure of feature
models (see Discussion on page 101).

4 Partial Product Kripke Structures

In this section, we introduce partial product Kripke structures, which are
an immediate abstraction of PPLs generated by models. We then discuss
simulation and bisimulation relations on these special Kripke structures.

By Kripke structures, we understand a family of mathematical structures
of the following format. We first fix a set A of atomic propositions, and then
consider a tuple K = (W,R,L) with W a set of (possible) worlds or states.
R a binary transition relation over W , and L a labelling function W → 2A,
which maps a world to the set of propositions true in this world. Partial
product lines motivate a specialization of the notion, in which worlds (called
partial products) are identified with sets of atomic propositions (features),
and hence labelling is not needed. Full products are identified by loops on
corresponding states. These structures also satisfy some special properties
defined in the following definition.

Definition 9 (partial product Kripke Structure) Let F be a finite set
(of features). A partial product Kripke structure (ppKS) over F is a triple
K = (PP,−→, I) with PP ⊂ 2F a set of non-empty (partial) products,
I ∈ PP the initial singleton product (i.e., I = {r} for some r ∈ F ), and
−→⊆ PP × PP a binary left-total transition relation9. In addition, the
following three conditions hold (−→+ denotes the transitive closure of −→):
(Singletonicity) For all P, P ′ ∈ PP , if P −→ P ′ and P 6= P ′, then P ′=P]{f}
for some f /∈ P .
(Reachability) For all P ∈ PP, I −→+ P , i.e., P is reachable from I.
(Self-Loops Only) For all P, P ′ ∈ PP, if (P −→+ P ′ −→+ P ), then P = P ′,
i.e., every loop is a self-loop.

9 A binary relation R over a set A is called left-total if ∀a ∈ A,∃b ∈ A : R(a, b).
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A product P with P −→ P is called full. The set of full products is
denoted by FP. 2

The components of a ppKS K are subscripted with K if needed, e.g., PPK .
We denote the class of all ppKSs built over a set of features F by KS(F ).
Note that any partial product in a ppKS eventually evolves into a full product
because F is finite, −→ is left-total, and all loops are self-loops. It means
that any ppKS enjoys the following property
(Finality) For all P ∈ PP , there exists a full product P ′ such that P −→∗ P ′,
where −→∗ denotes the reflexive transitive closure of −→.

The following statement is an obvious corollary of Definition 8.

Corollary 1 Let M ∈ FM(F ) be a model. Its partial product line is an
ppKS, i.e., P(M) ∈ KS(F ). 2

We will also need the notion of sub-ppKS.

Definition 10 (Sub-ppKS) Let K and K ′ be two ppKSs. We say K is a
sub-ppKS of K ′, denoted by K �sub K

′, iff PPK ⊆ PPK′ , and −→K⊆−→K′ .
2

It is easy to see that K �sub K
′ implies IK = IK′ .

Consider two Kripke structures, K and K ′, which are respectively built
over the set of atomic propositions A and A′ such that A ⊆ A′. A relation
R from the states of K to the states of K ′ is called a simulation [7] if for
any states s and s′, s R s′ if the label of s is a subset of the label of s′ and
for any transition s −→ t in K there is a transition s′ −→ t′ in K ′ such
that t R t′. We say that K ′ simulates K and write K �sim K ′ if there is
a simulation relation R from K to K ′ such that s0 R s′0, where s0 and s′0
are the initial states in K and K ′, respectively. We say that two Kripke
structures K and K ′ are simulation equivalent if K �sim K ′ and K ′ �sim K.
The following theorem shows that the restriction of the simulation relation
on ppKSs is equal to the substructure relation on them.

Theorem 2 Given two ppKSs, K ∈ KS(F ) and K ′ ∈ KS(F ′) with F ⊂ F ′,
K �sim K ′ iff K �sub K

′.

Proof. Consider two ppKSs, K and K ′, as above. We will first show that
(⇒) K �sim K ′ implies PPK ⊆ PPK′ and −→K⊆−→K′ .
Suppose that K �sim K ′ via a simulation relation R ⊆ PPK × PPK′ .
Since R(IK , IK′) and both IK , IK′ are singletons, IK = IK′ . In particular,
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PPK ∩ PPK′ 6= ∅.
Let P ∈ PPK ∩ PPK′ such that R(P, P ′). Consider a transition P −→K Q
(in K). Since K �sim K ′, there exists a transition P −→K′ Q′ (in K ′) such
that R(Q,Q′). Due to the singletonicity condition of ppKSs (see Defini-
tion 9), there are f ∈ F, f ′ ∈ F ′ such that f, f ′ 6∈ P , Q = P ∪ {f}, and
Q′ = P ∪ {f ′}. Since Q ⊆ Q′ (as R(Q,Q′)) and f, f ′ 6∈ P , f must be equal
to f ′, which implies that Q = Q′. Hence, for any P ∈ PPK∩PPK′ , the
following holds:
(*) R(P, P )⇒ (∀〈P −→K Q〉 : ∃〈P −→K′ Q〉, R(Q,Q)).
Now the equality IK = IK′ , the reachability condition of ppKSs (see Defini-
tion 9), and condition (*) imply that PPK ⊆ PPK′ and −→K⊆−→K′ .
To prove the converse implication,

(⇐) (PPK ⊆ PPK′) ∧ (−→K⊆−→K′)⇒ K �sim K ′,
note that if K is a substructure of K ′, then K ′ simulates K via the identity
relation id ⊆ PPK × PPK′ .

Notation. Since the two relations �sim and �sub on ppKSs are the same,
we drop the subscripts and write K � K ′ for both relations.

Browne et al in [6] defined a notion of equivalence between two finite
Kripke structures - usually called bisimulation in the literature [7]. Two
states s and s′ are called bisimilar if their labels of atomic propositions are
the same and for any transition s −→ t (s′ −→ t′, respectively) there is a
transition s′ −→ t′ (s −→ t, respectively) such that t and t′ are bisimilar.
We say that two Kripke structures K,K ′ are bisimilar and write K ≈ K ′ if
their initial states are bisimilar. Theorem 2 implies

Corollary 2 Given two ppKSs K and K ′ as above, the following three
statements are equivalent:
(a) K ≈ K ′
(b) K = K ′

(c) K � K ′ and K ′ � K

Proof: Since states in ppKSs are identified by their sets of labels, (a) ⇔
(b) holds. (a) ⇔ (c) is obvious. 2

Thus, while for general Kripke structures simulation equivalence is
weaker than bisimulation [7], this is not the case for ppKSs.
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5 Modal Logic Theory of Feature Models

There is a rich structure in P(M) (for a given model M) that is not captured
by the fact that P(M) is a ppKS—the class KS(F ) is too big. We want to
characterize P(M) in a more precise way by defining an as small as possible
class of ppKSs to which P(M) would provably belong. Hence, we need a
logic for defining classes of ppKSs by specifying a ppKS’s properties.

In this section, we first introduce a modal logic called partial product
CTL (ppCTL), which is tailored for specifying partial product Kripke struc-
tures’ properties. Then, given a model M over a finite set of features F , we
build two ppCTL theories from M ’s data, ML⊆(M) and ML(M) (ML refers
to Modal Logic), such that the former theory is a subset of the latter, and
the following holds for any ppKS K ∈ KS(F ):

Theorem 3 (Soundness) P(M) |= ML(M).

Theorem 4 (Semi-completeness) K |= ML⊆(M) implies K � P(M).

Theorem 5 (Completeness) K |= ML(M) iff K = P(M).

Completeness allows us to replace models by the respective ppCTL-
theories, which are highly amenable to formal analysis and automated
processing. Semi-completeness is useful (as an auxiliary intermediate step
to completeness, but also) for some important practical problems in feature
modeling such as refactoring and specialization [38] and some other analysis
operations [4] over models. (See Sect. 6 and Sect. 7.1 for more discussion.)
We build theories ML⊆(M) and ML(M) from small component theories,
which specify the respective properties of M ’s PPL in terms of ppCTL.

The structure of the rest of the section is as follows: Sect. 5.1 introduces
ppCTL. In Sect. 5.2, we start by discussing the structure of the entire compo-
nent family, and explain how the compound theories, ML⊆(M), ML(M), and

ML+(M)
def
= ML(M) \ML⊆(M) are built from them. Then, in Section 5.3,

we zoom into component theories and explain how they are built. Finally, in
Sect. 5.4, we prove the correctness of the theorems. Sect. 5.5 discusses PPLs
without i2c. Appendix A.2 presents full the ppCTL theory of the model in
Fig. 1.

5.1 Partial Product CTL (ppCTL)

Logic ppCTL is a fragment of CTL enriched with a constant (zero-ary)
modality ! to capture full products.
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Definition 11 (partial product CTL) Partial product CTL (ppCTL)
formulas are defined using a finite set of propositional letters F , an ordinary
signature of propositional connectives: constant (zero-ary) > (truth), unary
¬ (negation) and binary ∨ (disjunction) connectives, and a modal signature
consisting of modal operators: constant (zero-ary) modality !, and three
CTL unary modalities AX, AF, and AG. The well-formed ppCTL-formulas φ
are given by the following grammar:

φ ::= f | > | ¬φ | φ ∨ φ | AXφ | AFφ | AGφ | ! , where f ∈ F.

Other propositional and modal connectives are defined dually via negation
as usual: ⊥, ∧, EX, EF, EG are the duals of >, ∨, AX, AG, AF, respectively.
Also, we define a unary modality 2!φ as a shorthand for AG(! → φ). Let
ppCTL(F ) denote the set of all ppCTL-formulas over F . 2

The semantics of ppCTL-formulas is given using the class KS(F ) of
ppKSs built over the same set of features F . Let K ∈ KS(F ) be a ppKS
(PP,−→, I). We first define a satisfaction relation |= between a product
P ∈ PP and a formula φ ∈ ppCTL(F ) by structural induction on φ. This
is done in Table 2.

Table 2: Rules of satisfiability

P |= f iff f ∈ P (for f ∈ F )

P |= > always holds

P |= ¬φ iff P 6|= φ

P |= φ ∨ ψ iff (P |= φ) or (P |= ψ)

P |= AXφ iff ∀〈P −→ P ′〉. P ′ |= φ

P |= AFφ iff ∀〈P=P1 −→ P2 −→ . . .〉 ∃i ≥ 1: Pi |= φ

P |= AGφ iff ∀〈P=P1 −→ P2 −→ . . .〉 ∀i ≥ 1: Pi |= φ

P |= ! iff P −→ P

Given two theories φ, φ′ ∈ ppCTL(F ), we say that φ satisfies φ′ and
write φ |= φ′ iff ∀K ∈ KS(F ) : K |= φ⇒ K |= φ′. We say that φ and φ′ are
semantically equivalent iff φ |= φ′ and φ′ |= φ.
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5.2 Structure of the component family

Table 3: Component and Compound Theories

M
Semi-completeness To Ensure Com-

pleteness
Completeness

BL ML

T BL(T ) ∅ ML↓+(T ) ML(T )

EX BL(EX ) ∅ ∅ ML(EX )

OR ∅ ML!⊆(OR) ∅ ML!(OR)

IN ∅ ML!⊆(IN ) ∅ ML!(IN )

i2c BLi2c(TOR) MLi2c9⊆ (TOR) ∅ MLi2c(TOR)

FPM ∅ ML!⊆(M) ML!+(M) ML!(M)

PPM BL(M) ∅ ML↓+(T )∪ ML◦(M)

ML↔+ (TOR, EX )

P(M) ML⊆(M) ML+(M) ML(M)

All component theories we need are referenced in Table 3. Its bottom
row consists of the three compound theories mentioned above; the last
(rightmost) column theory is the union of the theories in its row—this is a
general rule for the entire table. Another general rule is that each theory
in the bottom row is the union of all components above it in its column(s)
(and ML⊆(M) is the union of all components in two columns). For further
references, we call theories in the bottom row and the last column external;
all other theories are internal.

Rows of the table are indexed by structural concerns to be logically
encoded; columns are named by the goals of these encodings: to provide
semi-completeness with respect to full product line and PPL (split into
Boolean and modal components), and to provide completeness with respect
to full product line and PPL: a theory in the last column is the union of
all theories in its row, and thus ensures completeness with respect to the
concern corresponding to the row. A theory in this column is called the
complete theory of the corresponding component. Each internal theory is
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an encoding of the corresponding concern for the corresponding goal. For
example, theory ML!⊆(OR) modally specifies the OR structure to provide
semi-completeness with respect to full product line (note the ! superindex).
For another example, BLi2c(TOR) is a Boolean encoding of the i2c-principle,
and its neighbor on the right is the additional modal constraint for the same
concern—it is needed to ensure semi-completeness. The empty neighbour on
the right means that nothing should be added (for this concern) to ensure
completeness. We do not intend to make the table strictly logical: its goal is
to reference component theories and explain their intentions.

5.3 The Content of Component Theories

Now we specify the internal theories, and explain their meaning. Boolean
theories are specified in Table 1. Modal theories are defined in Table 4 based
on the following motivation.

Table 4: Definitions of (basic) ppCTL theories

ML↓+(T ) =
{
f ∧ ¬∨ f↓ ∧ ¬

∨
BLEX (g)→ EXg : f ∈ F, f↓ 6= ∅, g ∈ f↓

}

ML!⊆(OR) = {f → 2!
∨
G : f ∈ F,G ∈ OR(f)}

ML!⊆(IN ) = {∧G→ 2!
∨
G′ : (G,G′) ∈ IN}

ML!⊆(M) = {!→ ∧
BL!(M)}

ML!+(M) = {∧BL!(M)→ !}

MLi2c9⊆ (TOR) =
{
f ∧ ¬g ∧ ¬∧BL!(T f

OR)→ ¬EXg : f, g ∈ F, f 6= g, f↑ = g↑
}

ML↔+ (TOR, EX ) =
{
f↑ ∧∧BLi2c(f) ∧ ¬∨BLEX (f)→ EXf : f ∈ F

}
,

BLi2c(f) = {g → ∧
BL!(T g

OR) : g, f ∈ F, g↑ = f↑, g 6= f}

BLEX (f) =
{∧

(G \ {f}) : G ∈ EX , f ∈ G
}

The theory ML↓+(T ) states that if a feature f is visited in a current
state (partial product) without visiting any of its children (note ¬∨ f↓ in
the theory), then, for each child g of f , if adding g to the current state does



Faithful Modeling of Product Lines with Kripke
Structures and Modal Logic 93

not violate the exclusive constraints (note ¬∨BLEX (g) in the theory), then
there must be a state immediately accessible from the current state visiting
g, i.e., f ∧¬∨ f↓∧¬

∨
BLEX (g)→ EXg. The union of this theory and BL(T )

generates a complete theory ML(T ) (Table 3). A ppKS K satisfying ML(T )
is guaranteed to capture the tree structure T .

Since exclusive constraints in a model talk only about semi-completeness
of partial products, the corresponding ML+ theory is empty. Thus, ML(EX ) =
BL(EX ).

The theories corresponding to OR deal with full products (states with
self-loop transitions). The theory ML!⊆(OR) is the modal version of the

Boolean theory BL!(OR) (Table 1). Consider an OR group G with G↑ = f .
The theory ML!⊆(OR) states that if f is visited in a current state, then at
least one of the elements involved in G must be visited in any final products
accessible from the current state, i.e., f → 2!

∨
G.

The nature of the theory corresponding to IN is like OR’s: it also
deals only with full products. The theory ML!⊆(IN ) is the modal version of

the Boolean theory BL!(IN ). Let (G,G′) be an inclusive constraint. The
theory ML!⊆(IN ) states that if all the elements involved in G are visited in
a current state, then at least one of the elements in G′ must be visited in
any final products accessible from the current state, i.e.,

∧
G→ 2!

∨
G′.

Obviously, the two theories ML!⊆(OR) and ML!⊆(IN ) are derivable

from the theory ML!⊆(M). ML!⊆(M) holding in a ppKS guarantees that any
full product in the ppKS is a full product of M . On the other hand, any
ppKS satisfying the theory ML!(M) (= ML!⊆(M) ∪ML!+(M)) must include
all full products of M and only them.

Recall that the theory BLi2c(TOR) (Table 1) guarantees that the partial
products of the PPL respect the i2c principle. However, as discussed in
Sect. 2.3, transitions also have to respect this principle. The modal theory
MLi2c9⊆ (TOR) excludes the invalid transitions due to the i2c principle (see
Table 4). This theory states that if a feature f is visited in a current state

without being completely instantiated (note ¬∧BL!(T f
OR) in the theory),

then there must not be any states immediately accessible from the current
state including any newly added sibling g of f , i.e., for any sibling g of f :
f ∧ ¬g ∧ ¬∧BL!(T f

OR)→ ¬EXg. Then, the complete theory relating to i2c,
MLi2c(TOR), would be the union of BLi2c(TOR) and MLi2c9⊆ (TOR).

Recall that, according to Definition 5, a set of features is a valid
partial product iff it satisfies the Boolean theory BL(M). However, any
ppKS satisfying this theory does not necessarily include all valid partial
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products. To ensure that the ppKS includes all partial products, we add
modal theories ML↓+(T ) and ML↔+ (TOR, EX ). Consider a state P and a
feature f such that f 6∈ P and f↑ ∈ P . The theory ML↔+ (TOR, EX ) states
that if adding f to P does not violate the exclusive constraints and the
i2c principle (note

∧
BLi2c(f) and ¬∨BLEX (f) in the theory, respectively),

then there must be an immediately accessible state from P including f , i.e.,
f↑ ∧∧BLi2c(f) ∧ ¬∨BLEX (f)→ EXf . The corresponding complete theory

is denoted by ML+(M) and is equal to BL(M) ∪ML↓+(T ) ∪ML↔+ (TOR, EX ).

Any ppKS K satisfying the semi-completeness theory ML⊆(M) would
be a substructure of P(M), i.e., P(M) simulates K. On the other hand, the
theory ML(M), which is the union of ML⊆(M) and ML+(M), guarantees
completeness, i.e., any ppKS K satisfying ML(M) is equal to the PPL of M .
These are proven in the next subsection.

5.4 Soundness, Semi-Completeness, and Completeness: Proofs

Our plan is as follows. We first prove soundness, then semi-completeness. The
completeness theorem will be a direct corollary of Lemma 1 and Lemma 2.

Soundness: P(M) |= ML(M).

Proof: To prove this theorem, we need to show that P(M) satisfies any
components of the theory ML(M).

(a) P(M) |= BL(M) is obvious by to Definition 5. Thus, all the Boolean
theories from Table 3 are satisfied by P(M).

(b) P(M) |= ML↓+(T ):

Let P ∈ PPM , f ∈ P , g ∈ f↓, P ∩ f↓ = ∅, and P 6|= ∨
BLEX (g),

i.e., P |= f ∧ ¬∨ f↓ ∧ ¬
∨
BLEX (g). We want to show that P |= EXg. Let

P ′ = P ∪{g}. According to (a), P |= BL(T )∪BL(EX ). Since the g’s parent is
already in P ′, adding g to P does not violate BL(T ). Since P 6|= ∨BLEX (g),
adding g to P also does not violate BL(EX ). Therefore, P ′ |= BL(T ) ∪
BL(EX ). Since all subfeatures of f are absent in P , BLi2c(P, f) = ∅ (note
Definition 6) and hence P |= BLi2c(P, f). Since P ′ |= BL(T ) ∪ BL(EX ) and
P |= BLi2c(P, f), according to Definition 7, there is a transition P −→M P ′.
Therefore, P |= EXg.

(c) P(M) |= ML!(M) follows obviously, since the set of states with
self-loops in P(M) is equal to the set of all full products of M . Note that
this also implies that P(M) satisfies both theories ML!⊆(OR) and ML!⊆(IN ),

since these two theories are derivable from the theory ML!⊆(M).
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(d) P(M) |= MLi2c9⊆ (TOR) follows obviously. Indeed, this theory guar-
antees that there would not be an invalid transition due to i2c principle.

(e) P(M) |= ML↔+ (TOR, EX ):
Let f and P be a feature and a partial product of M , respectively,

such that f↑ ∈ P , P |= BLi2c(f), and P 6|= ∨
BLEX (f). There are two

cases: (1) f ∈ P , (2) f 6∈ P . Due to the singletonicity condition of ppKSs
(Definition 9), (1) trivially leads us to the result. In case (2): According
to Definition 7, there exists a transition P −→M P ∪ {f}, which implies
P |= EX f . This results in P(M) |= ML↔+ (TOR, EX ).

Note that any other theory is the union of some of the above theories.
The theorem is proven. 2

Semi-completeness: K |= ML⊆(M) implies K � P(M).
Proof: Let K |= ML⊆(M). Since K |= BL(M), according to Definition 5,
PPK ⊆ PPM . Now, we are going to show that −→K⊆−→M .

Due to K |= ML!⊆(M) and PPK ⊆ PPM , any self-loop transitions
P −→K P in K is a self-loop transition P −→M P in P(M).

Consider a transition P −→K P ′, where P ′ = P ∪ {f} for a feature
f /∈ P . We want to show that there is a transition P −→M P ′ in P(M).
Again, note that any state in K is a partial product of M . To prove this
statement, according to Definition 7, we need to show that (a1) P ′ |= BL(T ),
(a2) P ′ |= BL(EX ), and (a3) P |= BLi2c(P, f). (a1) and (a2) are immediate
corollaries of K |= BL(M). To prove (a3), we need to show that for any
siblings g with g ∈ P , P |= BL!(T g

OR) (see Definition 6). Assume by a way
of contradiction that P 6|= BL!(T g

OR), i.e., g is not completely instantiated in
P . Since K |= MLi2c9⊆ (TOR), g ∈ P , and P 6|= BL!(T g

OR), there must not be
a transition P −→K P ′. This leads us to a contradiction. Thus, (a3) holds.
Based on the above reasonings, −→K⊆−→M .

Since PPK ⊆ PPM and −→K⊆−→M , according to Theorem 2, K �
P(M). 2

Completeness: K |= ML(M) iff K = P(M).
To prove the completeness theorem, we first need the following lemmas 1
and 2.

Lemma 1 K |= ML◦(M) implies PPK = PPM . 2

Proof: Let K |= ML◦(M). By Theorem 4, PPK ⊆ PPM . Now we need
to show that PPM ⊆ PPK . (We will illustrate general constructs used in
the proof with our running example - follow the footnotes.)
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Let P ∈ PPM and r be the root feature of T . The features included in
P represent a subtree of T , denoted by TP , whose root is r.10

We do a pre-order depth-first traversal of TP of a special kind complying
to i2c-principle: in each level of the tree, all the nodes that are completely
instantiated must be visited before the other nodes.11

Let SP = 〈f1, . . . , fn〉 with f1 = r be the traversal of TP .

The following condition (R) holds:12

(R): for all i < n either

(R-1) fi = f↑i+1 or

(R-2) ∃〈j < i〉 : fj = f↑i+1 & ∀g ∈ {f1, . . . , fi} :
(
g↑ = f↑i+1

)
⇒(

{f1, . . . , fi} |= BL!(T g
OR)

)
, i.e., g is completely instantiated in {f1, . . . , fi}.

We prove that any prefix subsequence of SP is a partial product of K
and so P itself. To this end, we use the following inductive reasoning:

(base case): K |= r implies that IK = {r} = {f1}.
(hypothesis): Assume that, for some 1 ≤ i < n, any prefix of the

sequence 〈f1, . . . , fi〉 is a state in K and there exists a path {f1} −→K

· · · −→K {f1, . . . , fi}. Let P ′ = {f1, . . . , fi}.
(inductive step): We want to prove that any prefix of the sequence

〈f1, . . . fi, fi+1〉 is a state in K and there exists the path {f1} −→K · · · −→K

P ′ −→K P ′ ∪ {fi+1}. To this end, we need to show that P ′ ∪ {fi+1} ∈ PPK

and there exists a transition P ′ −→K P ′ ∪ {fi+1}. We will prove this for
both cases (R-1) and (R-2) introduced above:

(R-1). Since P |= BL(EX ) (note that P ∈ PPM ), adding fi+1 to P ′ does
not violate the exclusive constraints, i.e., P ′ 6|= ∨BLEX (fi+1). As fi is freshly
added to state P ′, P ′ 6|= ∨ fi↓. Therefore, P ′ |= fi∧¬

∨
fi↓∧¬

∨
BLEX (fi+1).

Due to K |= ML↓+(T ), this implies that there is a transition P ′ −→K

P ′ ∪ {fi+1}. Hence, {f1, . . . , fi+1} ∈ PPK .

(R-2). As ∀g ∈ P ′ : (g↑ = f↑i+1)⇒ (P ′ |= BL!(T g
OR)) (note (R-2) above),

adding fi+1 to P ′ does not violated i2c,i.e., P ′ |= BLi2c(fi+1).

10For an example, consider the partial product {car, eng, gear,mnl, oil} in the model in
Fig. 1. We have the following formulas corresponding to BL(T ): eng → car, gear → car,
mnl → gear, and oil → gear, which clearly represent the subtree (eng) → car ← (mnl →
gear← oil).

11In the running example, gear must be visited before eng, since it is completely
disassembled in {car, eng, gear,mnl, oil}. In this example, the traversal would result in the
sequence 〈car, gear,mnl, oil, eng〉.

12car = gear↑; gear = mnl↑; gear (resp. car) = oil↑ (resp. eng↑) and mnl (resp. gear) is
the only sibling of oil (resp. eng) which is completely instantiated.
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P |= BL(EX ) implies that any subset of P satisfies BL(EX ). Since
P ′ ∪ {fi+1} ⊆ P , P ′ ∪ {fi+1} |= BL(EX ), which means P ′ 6|= ∨BLEX (fi+1).

Since P ′ |= BLi2c(fi+1)∧¬∨BLEX (fi+1)∧f↑i+1, andK |= ML↔+ (TOR, EX ),
there is a state {f1, . . . , fi+1} ∈ PPK such that P ′ −→K P ′∪{fi+1}. Hence,
P ∈ PPK . 2

Lemma 2 K |= ML(M) implies −→K= −→M . 2

Proof: Let K |= ML(M). There are two types of transitions in a ppKS:
self-loop transitions and others. Note that self-loop transitions denote full
products. We show that (1) full products of both P(M) and K are the same,
i.e., the set of their self-loops are the same, (2) Non-loop transitions in K
and P(M) are the same. (1) is obvious, since K |= ML!(M) (note Table 1).
In the following we also show that the statement (2) holds.

According to Theorem 4, −→K⊆−→M . Now what we need is to prove
that any non-loop transition in P(M) is also a transition in K. Note that,
according to Lemma 1, PPK = PPM . Consider a transition P −→M P ′,
where P ′ = P ∪ {f} for a feature f /∈ P . We want to show that there is a
transition P −→K P ′ in K. According to Definition 7, P ′ |= BL(T )∪BL(EX ),
and P |= BLi2c(P, f). Thus, there are two choices:

(i) BLi2c(P, f) = ∅
(ii) BLi2c(P, f) 6= ∅

(i): This implies that the parent of f is freshly added through a transition

ingoing to P . Hence, due to K |= ML↓+(T ), there exists a transition P −→K

P ′.
(ii): Since P ′ |= BL(EX ), P |= ¬∨BLEX (f). Also, P |= BLi2c(P, f) implies
that P |= BL!(T g

OR) for any g ∈ P ∩ (f↑)↓, which means P |= BLi2c(f).
Hence, due to ML↔+ (TOR, EX ), there exists a transition P −→K P ′.

(i) and (ii) implies that any non-loop transition in P(M) is also a tran-
sition in K. Hence, −→M⊆−→K . 2

Proof of Theorem 5 (Completeness):
Lemma 1 shows that K |= ML◦(M) implies PPK = PPM . Lemma 2 proves
that K |= ML(M) implies −→K= −→M . Hence, K |= ML(M) implies K =
P(M). Considering the soundness theorem (Theorem 3), the completeness
theorem is proven. 2
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5.5 Feature modeling without i2c

The i2c-principle should not be considered as a mandatory requirement
in generating PPLs from models. Given a model M , let P−i2c(M) denote
its PPL, whose partial products and transitions do not necessarily meet
the i2c principle: its set of states is {P ⊆ F : P |= BL(M) \ BLi2c(TOR)},
denoted by PP−i2cM , and its transitions, denoted by −→−i2cM , are defined as
in Definition 7, but the condition (a3) is not required. To build the ppCTL
theory of P−i2c(M), we just need to subtract the i2c theories from ML(M)
(i.e., exclude the column i2c from Table 3). Let ML−i2c(M) and ML−i2c⊆ (M)

denote the corresponding semi-complete and complete theories for P−i2c(M),
respectively. Then our proofs above provide also the following results (just
ignore the parts corresponding to i2c).

Theorem 6 P−i2c(M) |= ML−i2c(M). 2

Theorem 7 K |= ML−i2c⊆ (M) implies K � P−i2c(M). 2

Theorem 8 K |= ML−i2c(M) iff K = P−i2c(M). 2

Product lines without the i2c-principle have several interesting properties.

Definition 12 We call a ppKS K Boolean, if a transition between two
distinct states P, P ′ ∈ PPK exists iff P ⊂ P ′ and P ′ \ P is a singleton. The
class of all Boolean ppKSs over a set of features F is denoted by KSBL(F );
thus, KSBL(F ) ⊂ KS(F ). 2

Note that any Boolean ppKS K is determined by a pair of Boolean theories
(ΨK ,Ψ

!
K) such that Ψ!

K |= ΨK : the first theory defines all products in K,
while the second theory defines (the subset of) full products.13

Now it is easy to see that for a given model M , its PPL P−i2c(M) is
a Boolean ppKS specified by the pair (BL−i2c(M),BL!(M)) with the first
theory, BL−i2c(M) = BL(M) \ BLi2c(TOR) (see Table 1), specifying partial
products not necessary satisfying the i2c, and the second one specifying full
products. This ppKS enjoys the following universal maximality property.

Proposition 2 Let M ∈ FM(F ) be a model. Then any Boolean ppKS
K ∈ KSBL(F ) such that K |= BL−i2c(M) and K |= (! → BL!(M)), is a
substructure of P−i2c(M), i.e., K � P−i2c(M).

13In detail, ΨK =
∨ {Ψ(P ) : P ∈ PPK} and for a product P = {f1, . . . , fn}, Ψ(P ) =∧{f1, . . . , fn,¬g1, . . .¬gk}, where features gj /∈ P , and ¬gj denotes negation of gj . Theory

Ψ!
K is defined similarly with full rather than partial products.
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Proof: Let K be a ppKS as above. K |= BL−i2c(M) implies that
∀P ∈ PPK : P |= BL−i2c(M). Therefore, any state in K is a partial product
not necessary satisfying the i2c of M , i.e., PPK ⊆ PP−i2cM .
Since both K and P−i2c(M) are in KSBL(F ) and PPK ⊆ PP−i2cM , ∀P, P ′ ∈
PPK : P 6= P ′ ∧P −→K P ′ ⇒ P −→−i2cM P ′. This means that any non-loop
transition in K is a non-loop transition in P−i2c(M). Now, we just need to
show that any self-loop transition in K is a self-loop transition in P−i2c(M).
Since K |= !→ BL!(M), any full product of K is a full product of M , i.e.,
∀P ∈ PPK : P −→K P ⇒ P −→−i2cM P . 2

6 Feature model refactoring

Model refactoring is important for the practice of feature modeling [38].
The goal of refactoring is to replace a given model M with a syntactically
different but semantically equivalent model M ′, i.e., having the same (partial)
products. In this section we investigate what we can say about syntactical
relationships of two semantically equivalent models over the same set of
features F , i.e., such that M,M ′ ∈ FM(F ) and P(M) = P(M ′).

The first lemma shows that their trees must be identical.

Lemma 3 Given two models M and M ′, P(M) = P(M ′)⇒ TM = TM ′ .

Proof: Let TM = (F, r, ↑) and TM ′ = (F, r, ↑
′
). Consider an arbitrary

feature f ∈ F . We show that f↓↓ ⊆ f↓′↓′ and f↓′↓′ ⊆ f↓↓, i.e., f↓↓ = f↓′↓′ .
Assume that there is a feature g ∈ F such that g ∈ f↓↓ but g 6∈ f↓′↓′ . The
latter implies that ∃P ∈ PP : g ∈ P ∧ f 6∈ P , whereas the former implies
that ∀P ∈ PP : g ∈ P ⇒ f ∈ P . As these two statements contradict
each other, f↓↓ ⊆ f↓′↓′ . Likewise, f↓′↓′ ⊆ f↓↓. Therefore, f↓↓ = f↓′↓′ for
any feature f∈F , which implies (together with equality between the root
features) that ↑ = ↑′ . Thus, TM = TM ′ 2

Given a set of Boolean formulas (a theory) Ψ, we denote its semantic
closure {φ : Ψ |= {φ}} by Ψ|= (see footnote 7 on page 81 for the definition).

Given a model M , we mean BL(EXM )|= by EX |=M .

Lemma 4 Given two models M and M ′, P(M) = P(M ′)⇒ EX |=M = EX |=M ′ ,
i.e., their sets of exclusive constraints are equivalent.14

14Note that an exclusive constraint in a model may be derivable from others, e.g., if
G ∈ EX , then for any feature f 6∈ G, G ∪ {f} is a derivable exclusive constraint. This is
why we have used semantically equality rather than equality.
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Proof: Let M and M ′ be two models such that P(M) = P(M ′). According
to Lemma 3, TM = TM ′ . Therefore, their corresponding set of incomparable
features are the same, i.e., (#2F )M = (#2F )M ′ . Let us denote this set by
#2F .

According to the definition of partial products,

∀G ∈ #2F : ∧G ∈ EX |=M ⇔ (6 ∃P ∈ PPM : P |= ∧G),

∀G ∈ #2F : ∧G ∈ EX |=M ′ ⇔ ( 6 ∃P ∈ PPM ′ : P |= ∧G).

Since PPM = PPM ′ , EX |=M and EX |=M ′ must be equal. In other words, EXM

and EXM ′ are semantically equivalent. 2

Given a model M , we write (INM ∪ ORM )|= to denote (BL(INM ) ∪
BL(INM ))|=.

Lemma 5 Given two models M and M ′, P(M) = P(M ′) ⇒ (INM ∪
ORM )|= = (INM ′ ∪ ORM ′)|=.

Proof: Let M and M ′ be two models with P(M) = P(M ′). Then,
their full products are the same (recall that full products are specified
by self-loops), which means that BL!(M)|= = BL!(M ′)|= (see row (all!) in
Table 1). According to Lemma 3 and Lemma 4, (BL(TM ) ∪ BL(EXM ))|= =
(BL(TM ′) ∪ BL(EXM ′))|=. This implies that (BL!(ORM ) ∪ BL!(INM ))|= =
(BL!(ORM ′) ∪ BL!(INM ′))|=. 2

r	

f	 g	

r	

f	 g	
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8f, g 2 F : f = g" i↵ gp(f) �! gp(g) (TS).
Likewise,AS:

8f, g 2 F : f = g"
0
i↵ gp0(f) �! gp0(g) (TS’).

(TS) and (TS’) implies that:AS:

8f 2 F : gp(f) = gp0(f) ) f# = f#0 . (CE)
Since gp(r) = gp0(r) = {r} (the initial state in the PPL), due to (CE),
8f 2 F : f# = f#0 (a very simple induction), which implies that " = "0 .
Therefore, TM = T 0

M . 2AS:

Proposition 2 Given two FMs M and M 0: P(M) = P(M 0) ) �BL(EX M ) ⌘
�BL(EX M 0).10AS:

Proof: We show that exclusive constraints of an FM M are derivable
from its PPL, P(M). According to Theorem 3.3, TM is derivable from
P(M). Thus, the set #2F is also derivable. Now, according to Definition 5,
8G 2 #2F : G 2 EX , ( 6 9P 2 PPM : P |= V

G). Therefore, exclusive
constraints are derivable from the PPL, which proves our claim. 2AS:

Remark 1 The proofs above guide us how to algorithmically extract the
corresponding tree-structure and exclusive constraints (up to equivalence)
from a given PPL: For any feature f , gp(f) represents the shortest path
I = {r} �! . . . �! P = gp(f), where f is freshly visited at its end. This
path shows exactly all the ancestors of f . Since a PPL and its corresponding
set of features is finite, finding such a path for a given feature would be
algorithmic. This way, we can extract the tree-structure from the PPL.
As for exclusive constraints, we just need to search the PPL for any set of
incomparable features. Since both the set of features and the PPL are finite,
finding exclusive constraints would be algorithmic.AS:

The following proposition if the PPLs of two FMs are identical, then
their union theories of OR and IN constraints would be semantically equal.
However, PPLs cannot distinguish between OR and inclusive constraints
in FMs, as we can replace an OR constraint with an inclusive CC. For an
example,

r �! f _ g

10The notation ⌘ is used to denote the semantically equivalent theories. Note that an
exclusive constraint in an FM may be derivable from others, e.g., if G 2 EX , then for
any feature f 62 G, G [ {f} is a derivable exclusive constraint. This is why we have used
semantically equality rather than equality.

r, f r,g 

r 

r, f, g 

M5	
PPL5,6	M6	

Figure 5: M5 and M6 are semantically equal.

Note that PPLs cannot distinguish between OR and IN constraints
in models, as we can replace an OR constraint with an inclusive CC. For
instance, consider the models M5,6 in Fig. 5. The features f, g in M5 form an
OR group, while they are optional in M6 with an inclusive CC “r → f ∨ g”.
However, their PPLs are the same (see PPL5,6 in Fig. 5).

The three lemmas above imply the following important result. Given a
model M , let us call the sets of Boolean formulas EXM and ORM ∪ INM ,
resp., the exclusion and the mandatoriness theories provided by M .
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Theorem 9 If two feature models M and M ′ over the same set of features
have the same partial product lines, P(M) = P(M ′), then the models have
the same feature tree, the exclusion theories they provide are semantically
equivalent, and the mandatoriness theories they provide are semantically
equivalent as well. 2

Discussion. The theorem shows that the ppKS semantics for feature models
accurately captures both their tree structure and constraints. The former
component (that practitioners often call feature hierarchy) has always been a
challenging issue for the Boolean semantic [37], but is well manageable with
our ppKS semantics. That is why we call the ppKS semantics faithful. Note
also that any standard complete axiomatization of the Booleans semantics
allows us to replace semantic equivalence above by mutual derivability of
the theories.
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set of features is finite, finding such a path for a given feature would be
algorithmic. This way, we can extract the tree-structure from the PPL.
As for exclusive constraints, we just need to search the PPL for any set of
incomparable features. Since both the set of features and the PPL are finite,
finding exclusive constraints would be algorithmic.AS:

The following proposition if the PPLs of two FMs are identical, then
their union theories of OR and IN constraints would be semantically equal.
However, PPLs cannot distinguish between OR and inclusive constraints
in FMs, as we can replace an OR constraint with an inclusive CC. For an
example,

r �! f _ g

10The notation ⌘ is used to denote the semantically equivalent theories. Note that an
exclusive constraint in an FM may be derivable from others, e.g., if G 2 EX , then for
any feature f 62 G, G [ {f} is a derivable exclusive constraint. This is why we have used
semantically equality rather than equality.

M7	 M8	
r	

g	

r	

g	

Figure 6: M7 and M8 are not semantically equal.

However, given two models with the same tree-structure, equivalent
exclusive constraints, and the same full products, their PPLs are not neces-
sarily identical. This fact is due to the i2c principle. As an example, consider
the two models M7 and M8 in Fig. 6. The only difference between these
models is that an equivalent inclusive CC has been used in M8 is place of
an OR group in M7.

These two models satisfy the conditions (i), (ii), and (iii) in Theorem 9.
However, their PPLs are not the same. PPL8 in the figure represents P(M8).
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We can get the PPL of M7 by removing the dashed transition from {r, f} to
{r, f, g} (due to the i2c principle). 2

It is easy to see that if we do not consider i2c as a mandatory requirement
in generating PPLs for models, Theorem 9 above would be bidirectional:

Proposition 3 Two models over the same set of features, M = (T,OR, EX ,
IN ) and M ′ = (T ′,OR′, EX ′, IN ′), are (-i2c)-semantically equivalent, i.e.,
P−i2c(M) = P−i2c(M ′), iff the following three conditions hold: (i) T = T ′,
(ii) EX |= = EX ′|=, and (iii) (OR∪ IN )|= = (OR′ ∪ IN ′)|=

Proof: Obviously, Theorem 9 holds also on PPLs without i2c, as the
proofs of Lemmas 3, 4, and 5 have nothing to do with i2c. Consider two
models M and M ′ such that (i), (ii), and (iii) hold for them. We will show
that P−i2c(M) = P−i2c(M). (i) implies that BL(TM ) = BL(TM ′). (ii) implies
that BL(EXM )|= = BL(EXM ′)|=. Therefore, (BL(EXM ) ∪ BL(TM ))|= =
(BL(EXM ′) ∪ BL(TM ′))|=, which implies that BL(M)|= = BL(M ′)|=. This
means that, according to Proposition 2,

PP−i2cM = PP−i2cM ′ .
(iii) implies that (BL!(ORM )∪BL!(INM ))|= = (BL!(ORM ′)∪BL!(INM ))|=.
Then, considering (i) and (ii), BL!(M)|= = BL!(M ′)|=. Therefore,

FPM = FPM ′ .
Since PP−i2cM = PP−i2cM ′ and FPM = FPM ′ , according to Proposition 2 and
the maximality property of PPLs without i2c, P−i2c(M) = P−i2c(M). 2

7 Other Applications of the Modal Logic View of
Feature Modeling

In this section, we discuss some concrete tasks in feature modeling, which
would benefit from the modal logic view of models.

7.1 Analysis of models

Analysis of models is an important practical issue, and as industrial models
can contain thousands of features, the analysis should be automated [4]. A
big group of analysis problems rely on the Boolean semantics of models.
For example, given a model M , we may be interested in checking whether
PL(M) is not empty [39], or whether a given set of features G is a valid
full product, i.e., G ∈ PL(M) [24]. We may also be interested in finding
the set of common (core) features among all full products,

⋂
PL(M) [39],
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or checking whether f is a core feature, i.e., f ∈ ⋂PL(M). Specifically, an
important problem is to find so called dead features, which do not occur in
any product [24]. A typical practical approach to these analysis problems is
to encode the model by a Boolean theory, and then use off-the-shelf tools
like SAT-solvers [3].

However, there are some other important analysis problems, in which
the use of the Boolean semantics can be error-prone. For example, it is often
important to know if one model M1 is a refactoring of another model M2, or
a specialization of M2, or neither [38]. Standard definitions of refactoring and
specialization are based on semantics, which in the Boolean case gives rise
to defining refactoring M1 'M2 as PL(M1) = PL(M2) and specialization
M1 � M2 as PL(M1) ⊆ PL(M2). However, as we have seen above, the
Boolean semantics is too poor and makes the definitions above inadequate
for their goals (see the example in the introduction). Hence, in practice, to
investigate refactoring and specialization, engineers should work with pairs
(PL(M),M), whose second component represents the feature hierarchical
structure not captured by the first component. Working with such pairs
brings two issues. First, it leads to obvious maintenance problems: if one of
the components changes, the user must remember to propagate the changes
to the other component. Second, having a syntactical “non-Boolean” object
of analysis does not allow us to use SAT (or SMT) solvers. However, the PPL
semantics allows us to manage both issues. As our completeness theorem
shows, PPL(M) adequately captures the feature hierarchy, and hence we
can analyze a single object, PPL(M) or, equivalently, the modal theory
ML(M). In Sect. 6, we have deeply discussed refactoring in the semantics
sense (PPLs).

Finally, there are analysis problems only addressing the hierarchy, e.g.,
finding the Lowest Common Ancestor (LCA) of a set of features in the feature
tree [29]. The PPL semantics allows us to analyze such a problem by using
a model checker: given a set of features G and a candidate common ancestor
feature c, we need to check whether the Kripke structure PPL(M) satisfies∧
G→ c. This way, we could get the set of common ancestors of G. Let us

denote it by C. Now, to check whether an element l ∈ C is the LCA of G, we
just need to check if PPL(M) satisfies l→ ∧

C. Other syntactical analysis
problems can be approached in the same way: a model M is represented
by a Kripke structure PPL(M), the problem to be analyzed is encoded
by a ppCTL-formula φ, and a model checker tool is used for checking if
PPL(M) |= φ.
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7.2 PL-builder vs. PL-user View

Modal properties of product lines may not be so important for the user,
for whom a model is just a structure of check-boxes to guide his choices.
However, modal properties can be important for the vendor, who should
plan and provide a reasonable production of all products in the product line.
For example, consider the following scenario.

Suppose we want to design a chassis with two mandatory components:
an engine and a frame. An engine is of type e1 xor e2, and a frame is of
type f1 xor f2, as specified in the Fig. 7. In general, engine ei better fits
in frame fi, i = 1, 2, but the frame supplier can modify the frame for an
extra cost. Thus, we have four full products P0 ∪Pij with P0 = {c, e, f} and
Pij = {ei, fj}, i, j = 1, 2 (c, e, and f stand for chassis, engine, and frame,
resp.).

16	

c	

c,	e	 c,	f	

c,f,	f1	 c,f,f2	c,e,e1	 c,e,e2	

c,e,e1,f	
c,e,e2,f	 c,f,f1,e	 c,f,f2,e	

c,e,f,	
e1,f1	

c,e,f,	
e1,f2	

c,e,f,	
e2,f1	

c,e,f,		
e2,f2	

figures/groupExample	

chassis	

engine	 frame	

e1	 e2	 f1	 f2	
✕ ✕ ✕ ✕ 

PPL11	M11	

Figure 7: A model of an Engine Frame (a), and its PPL (b)

There are two ways for assembling the chassis. If we first decide on
the engine type, then, for engine ei, we may choose either to order frame
fi, or frame fj , j 6= i, with a suitable modification, depending on what
is cheaper (we assume that each frame type has its own supplier). Thus,
from each product P0 ∪ {ei}, i = 1, 2 there are two transitions as shown in
Fig. 7. However, if we first decide on the frame type, then only the engine
of the respective type can be mounted on the frame, and transitions from
P0 ∪ {fi} to P0 ∪ {fi, ej} j 6= i are illegal (shown dashed/red in Fig. 7). To
exclude the illegal transitions from the ppl, we need to add to the model the



Faithful Modeling of Product Lines with Kripke
Structures and Modal Logic 105

following two modal CCs: (fi ∧ e ∧ ¬ei)→ AX¬ej for i, j ∈ {1, 2} and i 6= j.
Such constraints cannot be expressed in BL as they do not change the set of
partial products, and only transition are affected.

7.3 Reverse Engineering of models

Reverse engineering of models is an active research area in feature modeling.
It addresses the following problem: given a PL, we want to build an ap-
propriate model representing the PL. Depending on the PL representation,
current approaches are grouped into two kinds: reverse engineering of models
from (a) Boolean logic formulas [14], and (b) from textual descriptions of
features [2, 30]. She et al. in [37] argue that none of these approaches is
complete. Indeed, the main challenge is to recover an appropriate hier-
archical structure of features. The Boolean logic approach is incomplete,
since, as already discussed, the Boolean logic semantics cannot capture the
feature hierarchy. The textual approach is also deficient as it is informal, and
also “suggests only a single hierarchy that is unlikely the desired one” [37].
To relieve the deficiencies of these approaches, the current stat-of-the-art
approach [37] proposes a heuristics-based procedure, which uses both types
of input. However, if we take the given input to be the ppCTL theory of the
PL, reverse engineering of models becomes simpler and more manageable, as
the theory contains everything needed to build a corresponding model. Also,
our careful decomposition of a model’s structure and the respective theories
into small blocks allows better tuning of the reverse engineering process. Our
ML theories ML(T ), ML!(OR) ∪ML!(IN ), and ML(EX ) capture, resp., the
tree-structure T , the mandatoriness requirements (OR-groups and inclusive
crosscutting constraints), and the exclusive constraints.

8 Related Work

We discuss the connection between models and event modelling of concurrent
systems in Sect. 8.1; other related work is discussed in Sect. 8.2.

8.1 Feature vs. Event-based Concurrency Modeling

In this section, we summarize similarities and differences between feature
modeling and event-based concurrency modeling. We also point to several
possibilities of fruitful interactions between the two disciplines.



106 Z. Diskin, A. Safilian, T. Maibaum, S. Ben-David

Following the survey in [40], we distinguish three approaches in event
modeling. The first is based on a topological notion of a configuration
structure (E, C) with E a (possibly infinite) set of events, and C⊂2E a family
of subsets (usually finite) of events, which satisfy some closure conditions (e.g.,
under intersection and directed union). Sets from C are called configurations
and understood as states of the system: X ∈ C is a state in which all events
from X already occurred.

In the second approach, valid configurations are specified indirectly
by some structure DDD of dependencies between events, which make some
configurations invalid. Formally, some notion of validity of a set X ⊂ E
with respect to DDD is specified so that an event structure (E,DDD) determines
a configuration structure {X ⊂ E : X is valid with respect to DDD}. Typical
representatives of this approach are Winskel’s prime and general event
structures [41], and Pratt’s event spaces [33].

The third approach, originating in [20], is an ordinary encoding of sets
of propositions by Boolean logical formulas. Then an event model is just
a Boolean theory, i.e., a pair (E,Φ) with Φ a set of propositional formulas
over set E of propositions. The left half of Table 5 summarizes this rough
mini-survey.

Table 5: Event vs. feature modeling

Approach
Event
Models

Feature Models

Boolean Modal

Topological (E, C) (F,PP,FP) (F,PP,→, I)

Structural (E,DDD) (F,M)

Logical (E,Φ) (F,BL(M),BL!(M)) (F,ML(M))

Importantly, transitions between states are typically considered a de-
rived notion: in [20], any set inclusion is a transition, and in [40], special
conditions are to hold in order for a set inclusion to be a valid transition. A
notable exclusion is event automata in [31], i.e., tuples (E, C,→, I) with →
a given transition relation over configurations (states), and I ∈ C an initial
state.

Feature modeling is directly related to event modeling, and actually can
be seen as a special interpretation of event modeling. Indeed, features can
be considered as events, (partial) products as configurations, and models as
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special event-structures: An model M = (TOR, EX , IN ) can be seen as a
special encoding of a set of dependencies analogous to DDD (the middle row
of the table). An important distinction of the Boolean feature modeling is
the presence of a special subset of final states (products), so that feature
modeling’s topological and logical counterparts are triples rather than pairs
(see the Boolean column in the table). Pinna and Poigné in [31] mention
final states (they call them quiescent) but do not actually use them, whereas
for feature modeling, final products are a crucial ingredient.

The last column of the table describes feature modeling’s basic topo-
logical and logical structures in the modal logic view: the upper row is our
notion of ppKS, and the bottom one is the theory specified in Sect. 5. Our
ppKS is exactly an event automaton with quiescent states, which, addition-
ally, satisfies the conditions of Left-totality of the transition relations and
Self-loops only, but Pinna and Poigné do not apply modal logic for specifying
event automata’s properties (and do not even mention it); they also do not
consider the i2c-principle.

The comparison above shows enough similarities and differences to hope
for a fruitful interaction between the two fields. We are currently investigating
what feature modeling can usefully bring to event modeling; and can mention
several simple findings. The presence of two separate Boolean theories allows
us to formally distinguish between enabling and causality [20]. Also, we are
not aware of propositional specifications of transient conflicts (discussed on
page 84) such as our Boolean and modal encoding of i2c. These encodings
are nothing but a compact formal specification of a transaction mechanism,
which is usually considered to be non-trivial.

Recently similar generalizations were proposed for event modeling in the
formalism of DCR-Graphs [21]. DCR-Graphs employ two relations between
events, condition (the same as the causality relation in prime event structures)
and response, that correspond to our subfeature and mandatoriness relations,
respectively. Their markings roughly correspond to our partial products, and
initially required response events somehow correspond to full products. DCR-
Graphs also use two additional relations dynamic include/exclude, which
allow them to model several important constructs in concurrent distributed
workflow, including transient conflicts. However, we conjecture that models
provide more expressiveness for event modeling than DCR-Graphs do. The
main reason is that response events (dually) correspond to maximal runs of
configurations. Correspondence between response events and full products
would then enforce full products to be terminal in our PPL, while there
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are models with some non-terminal full products (for instance, see Fig. 2).
A detailed comparative analysis of models and DCR-Graphs should be an
interesting research task.

These observations show that a simple feature model formalism is
capable of encoding complex modal theories specifying non-trivial concurrent
phenomena.

8.2 Related Work in Feature Modeling

Formal Language based Approaches. Several approaches, [3, 12, 15],
and [35], have been proposed connecting feature modeling to formal languages.
The closest work to ours is [35], where we provided a semantics for cardinality-
based feature models (a generalization of models in which we deal with feature
instances) by using formal languages as the semantic domain. We first
proposed a generalization of cardinality-based FDs (CFDs), called cardinality-
based regular expression diagrams (CRDs) in which a label of a node can be
any regular expression built over a set of features. Then, a reduction process
was provided going from a given CRD to a regular expression. It was proven
that the regular expression generated for a given CFD captures both the full
products and the hierarchy of the CFD. As for CCs, we proposed a language
interpretation of them, which allowed us to integrate the semantics of CFDs
and CCs over them.

The main similarity between the two approaches is that they both
provide faithful semantics for feature modeling. However, they do so in two
different ways. To be able to discuss their differences in detail, we transform
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Figure 8: (a) M , (b) P(M), (c) A(M)

PPLs to automata as follows. The singletonicity property in ppKSs (see
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Definition 9) allows us to transform PPLs into finite state automata (FSA)
in a straightforward way. Indeed, there is a duality between a PPL and
its corresponding FSA. Fig. 8(b) represents the PPL of the model M in
Fig. 8(a)– the full products are circled. Fig. 8(c) represents the corresponding
FSA of the PPL, where the final states are identified by double circles. Let
A(M) denote this automaton. Applying the translation procedure on M
described in [35], the regular expression generated for M would be equal
to R = c (e b (ε+ a) + b (ε+ a) e). Note that there are infinite number of
automata whose languages are equal to the language of R. On the other
hand, the Kripke approach generates a unique automaton for a given model,
as we saw in the example above. Roughly speaking, the Kripke approach is
an imperative approach, while the language approach is a declarative one.
Also, the language of A(M) is not equal to the language of R. (the latter is
a proper subset of the former.)

Algebraic Approaches. An algebraic model based on commutative
idempotent semirings was developed in [22]. Given an model M , its PL is
encoded as a term in the algebra generated by M ’s leaf features, so that
non-leaf features are derived. In contrast, for us, all features are basic, which
better conforms to a common feature modeling practice.

Amongst algebraic models for PLs, the closest to ours is a process
algebra, called PL-CCS [26], which extends the classical CCS by an operator
⊕ to model variability. Each ⊕ occurrence in a PL-CCS expression is
equipped with a unique index, and runtime occurrences with the same index
must make the same choice. Processes are interpreted as products and
the behaviour of a PL is given by a set of processes whose semantics is
given by multi-valued Kripke structures. There are interesting similarities
and differences between PL-CCS and our approach. In PL-CCS, a PL’s
behaviour is reconstructed from an immediate PL specification. In contrast,
we extract the behaviour from the model, which we have shown can be seen
as an indirect PL’s specification providing everything needed to reconstruct
the behavior. We might say that in PL-CCS, the expressive power of models
is underestimated as they are seen in the Boolean perspective. Importantly,
PL-CCS allows for recursive definitions of processes, which makes it more
expressive than our ppCTL. However, allowing recursive product definitions
leads us beyond the boundaries of the tree-based models and our goals in the
present paper. Iterative definitions are possible in cardinality-based models.
On the other hand, crosscutting constraints cannot be expressed in PL-CCS,
but are readily specified in our approach (we even allow for modal CCs).
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Staged Configurations. Czarnecki et al introduced and developed
the concept of (multi-level) staged configuration in [11,13]: given an model
M , its full products are instantiated via consecutive specializations (called
stages) of M by either discarding an optional feature or making it mandatory
for the stage at hand and all consecutive stages. This process is continued
until a fully specialized model denoting only one configuration is reached. A
formal semantics for such multi-level staged configurations was defined by
Classen et al [9]. The idea was further developed by Hubaux et al [23], who
proposed to map models to tasks and conditions of workflows. Their approach
supports parallel execution of stages and choice between them, and iterative
configurations. Although both PPLs and configuration stages show how to
instantiate full products, they are essentially different. Configuration paths
are sequences of models with decreasing variability, whereas instantiation
paths in PPLs are sequences of products with increasing commonality. Thus,
the two frameworks aim at different goals and are somewhat orthogonal (but,
of course, PPLs cover variability too as full products are included into PPL).

Feature Transition Systems. In a series of papers summarized in [8],
Classen et al proposed an elegant and effective solution to checking a given
pl of transition systems (TS) in a single run of a model checker rather than
checking each of the TSs separately. The entire pl is encoded as a feature
TS (FTS), in which transitions are labeled by both actions and Boolean
expressions over features as Boolean variables. A truth assignment to the
feature variables defines the behaviour of a single product, and the FTS as a
whole represents the entire pl. They also defined a logic fCTL to allow CTL
properties to refer to specific products in the line and extended the model
checking procedures to support checking FTSs against fCTL properties.
Their tools are capable of reporting, in a single model checking run, all
products for which a property holds, as well as those for which it fails to hold.
In [10], Cordy et al extend a common model checking framework known as
CEGAR, to support FTSs as well. Thus, FTS and our idea are orthogonal
ideas: for the former, a product is a TS, while for us a product is a set of
features without any functional properties. These two ideas can be combined
in a single formalism, but we leave it for future work.

Hierarchical Multiset Semantics. Safilian and Mibaum in [34] pro-
pose a multiset-based theory for a given CFD, which is called the hierarchical
theory of the CFD. The theory is based on a defined hierarchy of multisets
over the set of features. The hierarchical theory of the CFD is a subset of
this hierarchy. It is shown that the theory captures all information about
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the diagram (even explicitly distinguishing between the grouped and solitary
features). The theory provides a promising theoretical framework to address
some challenging issues in feature model management and reverse engineering
of CFDs. However, they have not managed CCs in their theory (mentioned
as a future work).

9 Future Work

We describe several interesting open problems in the modal logic view of
models, which would be theoretically and practically important.

(i) Complete Axiomatic System for ppCTL. Finding a sound and
complete axiomatic system for ppCTL is theoretically interesting. It would
be also important in practice to do automated analysis over basic feature
models (see (ii) below). As we know, ppCTL is a fragment of CTL plus a
constant modality !. Several sound and complete axiomatic systems have
been proposed for CTL, including [17], [5], and [25]. We can take advantage
of these axiomatic systems to approach a sound and complete axiomatic
system for ppCTL.

(ii) Modal logic theory of Boolean semantics. Let Ψ be a Boolean
theory over a set of atomic propositions F , and PPL(Ψ) = {P ⊂ F : P |= Ψ}
its set of models. We can consider PPL(Ψ) as a discrete Kripke structure
without transitions (and injective labeling). We can convert it into a normal
Kripke structure P(Ψ) by considering inclusions between states, and only
them, as transitions. Now for a modal formula φ in some modal logic ML,
we write Ψ |=∗ φ if P(Ψ) |=ML φ. Note that while the latter relation is an
ordinary semantic entailment (for the logic ML), relation |=∗ is between
formulas in different logics. Specifically, if our modal logic has a zero-ary
modality, then we can define (Ψ,Ψ′) |=∗ φ for a pair of Boolean formulas such
that Ψ′ |=BL Ψ. These considerations show that modal logic can be employed
for specifying properties of Boolean semantics, i.e., as a meta-theory for
Boolean logic. We are not aware of a systematic study of this construction.
For example, how could the relations |=∗ be axiomatized?

(iii) Automated analysis of models. To implement analysis operations
over a given feature model M , one could apply either a model checker or
theorem prover. To apply a model checker, we need to transform M to its
PPL P(M) and characterize given analysis problems in terms of ppCTL
formulas. We plan to implement the analysis operations over some realistic
examples using existing model checking tools. To take advantage of theorem
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provers, we first need to have a complete axiomatic system for our logic.
There exist some theorem provers such as BDDCTL [28], CTL-RP [42], and
MLSolver [18], which can be used for reasoning about the CTL formulas.

(iv) Process algebras for ppKSs and models. Industrial systems are
often very complex, and software companies usually design their systems by
utilizing smaller systems, which themselves are produced by other compa-
nies [1]. Therefore, bigger feature models could be seen as composed from
several smaller models. Hence, having a compositional way of defining com-
plex models and their corresponding PPLs based on some algebra becomes
important.

(v) Strong version of i2c. Recall that the current version of the i2c
principle says that two incomparable features can be included together
in a partial product if at least one of them has been already completely
instantiated. The current version of this principle is unavoidable, if we would
like to realize a step-by-step computation; this is why ppKSs are enforced
to satisfy the singletonicity condition (see Definition 9). However, in some
contexts like concurrent systems, it also makes sense to consider a stronger
version of the i2c principle: two incomparable features can be included
together in a partial product if they both have been already completely
instantiated. We plan to specify such a stronger version of the i2c-principle, in
which a full product instantiation is always a transaction (which corresponds
to replacing disjunction by conjunction in the definition of theory BLi2c(TOR),
row (3) in Table 1). To address this problem, we would first need to modify
the definition of ppKSs, as the singletonicity condition would not hold
anymore. The logic would be the same, but the ppCTL theory of a given
model satisfying the strong i2c principle changes (which makes the problem
challenging).

(vi) Reverse engineering of models. In Sect. 6, we have shown that the
PPL of a given model captures the tree structure, the exclusive constraints
(up to equivalence), and the mandatoriness constraints (up to equivalence).
Since the set of features and also the PPL are finite, finding the components
of an appropriate model (a model, which is refactoring of the original model)
would be algorithmic. We plan to address this problem in our future work.

10 Conclusion

We presented a novel behavioural view of models, in which a product is an
instantiation process rather than its final result. We called the states of
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this process partial products, and showed that the set of partial products
together with a set of (carefully defined) valid transitions between them can
be considered as a special Kripke structure, whose properties are specifiable
by a special fragment of CTL enriched with a constant modality. We called
this logic ppCTL. Our main result show that a model can be considered
as a compact representation of a rather complex ppCTL-theory. Thus,
the logic of feature modeling is modal rather than Boolean. We have also
discussed several concrete tasks in feature modeling, which would benefit
from using the modal logic view of models. These tasks include refactoring of
models, analysis of models, reverse engineering of models, and specification
of cross-cutting constraints.
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A Appendix. The BL and ppCTL theories of our
running example (model M1 in Fig. 1)

In this section, we instantiate the general proofs in Sect. 5 with our running
example data. Let us denote the model in Fig. 1 by M = (T,OR, EX , IN ),
where T is the tree of the model, and the other three components denote
the respective three structures over T . In detail, T = (F, r, ↑), where
F = {car, eng, gear, brakes, gas, elec,mnl, atm, oil, abs}, r = car, and mapping
↑ is defined as follows: eng↑ = gear↑ = brakes↑ = car, gas↑ = elec↑ = eng,
mnl↑ = atm↑ = oil↑ = gear, abs↑ = brakes.

Mappings OR is defined as follows:

OR(car) = {{eng}, {gear}, {brakes}}, OR(eng) = {{gas, elec}}, OR(
gear) = {{mnl, atm}, {oil}}, and OR(brakes) = ∅.

Finally, sets EX and IN are as follows: EX = {{elec,mnl}, {mnl,
atm}}, and IN = {atm→ abs}.

A.1 The Boolean theory

According to Table 1, the Boolean theories associated with each of M ’s
components are as follows:

The elements of BL(T ):

> → car

eng→ car, gear→ car, brakes→ car

gas→ eng, elec→ eng,

mnl→ gear, atm→ gear, oil→ gear,

abs→ brakes.

(1)

The elements of BL(EX ):

elec ∧mnl→ ⊥,
mnl ∧ atm→ ⊥. (2)

http://dx.doi.org/10.1007/978-3-642-02959-2_20
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The elements of BL!(OR):

car→ eng, car→ gear, car→ brakes,

eng→ gas ∨ elec,

gear→ mnl ∨ atm, gear→ oil.

(3)

The elements of BL!(IN ):

atm→ abs. (4)

To obtain the theory BLi2c(TOR) (Boolean theory of i2c), we need to
find the corresponding formulas, according to line (3) in Table 1, for the
siblings, i.e., for the pairs (eng, gear), (eng, brakes), (gear, brakes), (gas, elec),
(mnl, atm), (mnl, oil), and (atm, oil). Note that, for two sibling leaves f and
g (i.e., f↑ = g↑ and f↓ = g↓ = ∅), the corresponding formula, f ∧ g → f ∨ g
(since BLi2c(T f

OR) = {> → f} ≡ {f} and BLi2c(T g
OR) = {> → g} ≡ {g}), is

a tautology. Therefore, since gas, elec, mnl, atm, oil are leaves, the Boolean
i2c formulas associated with the pairs (gas, elec), (mnl, atm), (mnl, oil), and
(atm, oil) are all tautologies. Thus, the elements of BLi2c(TOR)15 are:

eng ∧ gear→ (gas ∨ elec) ∨ ((mnl ∨ atm) ∧ oil),

eng ∧ brakes→ (gas ∨ elec) ∨ brakes ≡ >,
gear ∧ brakes→ ((mnl ∨ atm) ∧ oil) ∨ brakes ≡ >.

Thus,
∧
BLi2c(TOR) ≡

eng ∧ gear→ (gas ∨ elec) ∨ ((mnl ∨ atm) ∧ oil). (5)

According to line (all!) in Table 1, the BL theory of the full products
of M , BL!(M), is the set of all elements in (1), (2), (3), and (4). Thus, the
theory

∧
BL!(M) would be semantically equivalent to the conjunction of the

following elements:

car ∧ eng ∧ gear ∧ brakes,

(gas ∨ elec) ∧ (mnl ∨ atm) ∧ oil,

(mnl ∧ atm→ ⊥) ∧ (elec ∧mnl→ ⊥),

(abs→ brakes)

(6)

According to line (all) in Table 1, the BL theory of the partial products
of M , BL(M), is the set of all elements in (1), (2), and (5).

15Note that we wrote the semantically equivalent formulas, e.g., the second element
would be eng ∧ brakes→ ((gas ∨ elec) ∧ eng) ∨ (brakes).
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A.2 The ppCTL theory

According to Table 3, the semi-complete theory of P(M), ML⊆(M), is equal
to the union of BL(M) and the following ML theories:

The elements of ML!⊆(OR):

car→ 2!eng, car→ 2!gear, car→ 2!brakes,

eng→ 2!(gas ∨ elec),

gear→ 2!(mnl ∨ atm), gear→ 2!oil.

(7)

The elements of ML!⊆(IN ):

atm→ 2!abs (8)

The elements of ML!⊆(M):

!→
∧

BL!(M), where BL!(M) can be found in (6) (9)

The elements of MLi2c9⊆ (TOR)16:

eng ∧ ¬gear ∧ ¬gas ∧ ¬elec→ ¬EX gear,

gear ∧ ¬eng ∧ (¬oil ∨ (¬mnl ∧ ¬atm))→ ¬EX eng,

eng ∧ ¬brakes ∧ ¬gas ∧ ¬elec→ ¬EX brakes,

gear ∧ ¬brakes ∧ (¬oil ∨ (¬mnl ∧ ¬atm))→ ¬EX brakes

(10)

According to Table 3, to get the complete theory of P(M) (ML(M))
we need to add the following ML theories to the semi-complete theory
(ML⊆(M)).

16According to Table 4, there is a corresponding formula for each pair of sibling features
f and g. For our example, the corresponding formulas for other pairs of siblings are
tautologies, e.g., take f = brakes and g = eng: the corresponding formula would be
(brakes ∧ ¬eng ∧ ¬brakes→ ¬EX eng) ≡ (⊥ → ¬EX eng)
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The elements of ML↓+(T ):17

car ∧ ¬(eng ∨ gear ∨ brakes)→ EX eng ∧ EX gear ∧ EX brakes,

eng ∧ ¬(gas ∨ elec) ∧ ¬mnl→ EX elec,

eng ∧ ¬(gas ∨ elec)→ EX gas,

gear ∧ ¬(mnl ∨ atm ∨ oil) ∧ ¬elec ∧ ¬atm→ EX mnl,

gear ∧ ¬(mnl ∨ atm ∨ oil) ∧ ¬mnl→ EX atm,

gear ∧ ¬(mnl ∨ atm ∨ oil)→ EX oil,

brakes ∧ ¬abs→ EX abs.

(11)

The elements of ML!+(M):

∧
BL!(M)→!, where BL!(M) can be found in (6) (12)

The elements of ML↔+ (TOR, EX ):

(gear→ (mnl ∨ atm) ∧ oil) ∧ car→ EX eng,

(eng→ gas ∨ elec) ∧ car→ EX gear,

(eng→ gas ∨ elec) ∧ (gear→ (mnl ∨ atm) ∧ oil) ∧ car→ EX brakes,

eng→ EX gas,

eng ∧ ¬mnl→ EX elec,

gear ∧ ¬elec ∧ ¬atm→ EX mnl,

gear ∧ ¬mnl→ EX atm,

gear→ EX oil,

brakes→ EX abs.

(13)

The complete ML theory of the tree-structure, ML(T ) = BL(T ) ∪
ML↓+(T ), would be the set of all elements in (1) and (11).

The complete ML theory of exclusive constraints, ML(EX ) = BL(EX ),
would be the set of formulas in (2), which is semantically equivalent to
mnl ∧ (elec ∨ atm)→ ⊥.

The complete ML theory of the OR component, ML!(OR) = ML!⊆(OR),
would then be the set of formulas in (7), which is equivalent to the conjunction
of the formulas car → 2!(eng ∧ gear ∧ brakes), eng → 2!(gas ∨ elec), and
gear→ 2!(oil ∧ (mnl ∨ atm)).

17The first element is the combination of three original elements of the set.
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The complete ML theory of inclusive constraints, ML!(IN ) = ML!⊆(IN ),
is then {atm→ 2!abs}.

The complete ML theory of i2c, MLi2c(TOR) = BLi2c(TOR)∪MLi2c9⊆ (TOR),
would be the set of all formulas in (10) and (5).

The complete ML theory of the full products, ML!(M) = ML!⊆(M) ∪
ML!+(M), would be equivalent to !↔ ∧

BL!(M), where BL!(M) was defined
in (6).

The complete ML theory of the partial products, ML◦(M) = BL(M) ∪
ML↓+(T ) ∪ML↔+ (TOR, EX ), is the set of formulas in (1), (2), (5), (11), and
(13).
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