16 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Seed predation food web, nutrient availability, and impact on the seed germination of Senegalia tenuifolia (Fabaceae)

    No full text
    Estudios de redes alimentarias, que incluyen información cualitativa y cuantitativa sobre las interacciones entre especies para todos los niveles tróficos en una comunidad específica, son herramientas importantes para caracterizar la estructura de la comunidad, y para comprender el papel de la interacción de las especies en las comunidades naturales. Con este objetivo, se recolectaron frutos de Senegalia tenuifolia de un total de nueve sitios de tres áreas diferentes, en Minas Gerais, entre junio y agosto 2011. Los frutos fueron recolectados y llevados al laboratorio en contenedores especiales, para permitir el desarrollo y descripción del insecto. Luego, se caracterizó la red alimentaria de los insectos asociados a estas semillas, se describieron las interacciones entre estos organismos y la planta hospedera, y se evaluó el impacto del ataque de insectos en la germinación de semillas mediante un experimento en condiciones controladas. Además, se estimó el contenido de NPK y la relación carbono:nitrógeno en frutos y en semillas. En semillas de S. tenuifolia, se encontraron 937 insectos de 15 especies estructuradas en cuatro niveles tróficos. Se encontraron dos especies de Bruchinae que se alimentan de semillas: Merobruchus terani y Stator maculatopygus. También se observaron especies de himenópteros que se alimentan de semillas: Allorhogas sp. 1 y Prodecatoma sp. 1, y especies de himenópteros parasitoides como: Eupelmus sp.1, Lyrcus sp.1, Eurytoma sp.1, Horismenus sp.1, Chelonus sp.1, Aprostocetus sp.1, Eiphosoma sp.1 y un Pteromalinae no identificado. Nuestros datos sugieren valores bajos de generalidad trófica y valores altos de vulnerabilidad trófica, además de otros, lo que demuestra cómo las interacciones entre especies son especializadas. El impacto en las semillas de los insectos que se alimentan de estas es severo e impidió su germinación. Por último, las semillas tenían un mayor contenido de NPK que los frutos. En conclusión, la red alimentaria de depredación de semillas con S. tenuifolia tiene dos características: interacciones de especies especializadas, considerando parasitoides y especies comedoras de semillas, e interacciones generalizadas entre especies, teniendo en cuenta la planta hospedera y las especies comedoras de semillas. De hecho, las semillas son recursos con alta concentración de nutrientes que proveen una rica y compleja red trófica. Por último, las semillas de S. tenuifolia se ven directamente afectadas por los insectos que se alimentan de semillas, que les impide la germinación, lo que podría resultar en un efecto negativo en la población planta-hospedero.Food web studies, which include qualitative and quantitative information about species interactions for all trophic levels in a specific community, are important tools to characterize the community structure, and to understand the role of species interaction in natural communities. With this aim, we collected fruits of Senegalia tenuifolia from a total of nine sites from three different areas in Minas Gerais, from June to August 2011. Fruits were collected and taken to the laboratory in special containers, to allow insect development and description. And then, we characterized the food web of insects associated with these seeds, and described interactions between these organisms and the host plant, and assessed the impact of insect attacks on seed germination with an experiment under controlled conditions. Additionally, we estimated the available NPK content and the Carbon:Nitrogen ratio in both fruits and seeds. In S. tenuifolia seeds, we have found 937 associated insects of 15 species structured in four trophic levels. We found two Bruchinae seed-feeders species: Merobruchus terani and Stator maculatopygus. We also have observed the seed-feeding hymenopteran species Allorhogas sp. 1 and Prodecatoma sp. 1, and hymenopteran parasitoids species such as Eupelmus sp.1, Lyrcus sp.1, Eurytoma sp.1, Horismenus sp.1, Chelonus sp.1, Aprostocetus sp.1, Eiphosoma sp.1 and an unidentified Pteromalinae. Considering quantitative food web metrics, our data have suggested low values of generality and high values of trophic vulnerability, besides others, which demonstrated how species interactions are specialized. The impact of seed-feeding insects on seeds was found severe and prevented their germination. Lastly, seeds contained higher NPK content than fruits. In conclusion, the seed predation food web supported by S. tenuifolia has depicted two different features: specialized species interactions, considering parasitoids and seed-feeding species, and, generalized species interactions, considering host-plant and seed-feeding species. Indeed, seeds are resources with high nutrient concentration supporting a rich and complex food web. Finally, S. tenuifolia seeds are directly impacted by seed-feeding insects, preventing them from germination, which could result in a negative effect on host-plant population

    Morphological traits, allometric relationship and competition of two seed-feeding species of beetles in infested pods

    No full text
    Pair-wise competition produces asymmetric consequences for the interacting species, resulting in reduction of species fitness at the individual scale; however, little is known of the effects of competition on the allometric patterns of insects. In this study, we explored how competition, by means of pod infestation, affects the development of female and male individuals in the co-occurring bruchine beetles Merobruchus terani and Stator maculatopygus. We found differences between M. terani and S. maculatopygus in all morphometric traits, but no significant differences between males and females in either species. We also found, with an increasing degree of pod infestation, a positive trend in the pronotum, elytron and body weight of M. terani and a negative trend in morphological traits and body weight of S. maculatopygus. A negative allometry was maintained, suggesting that with increasing body weight, the body structures did not increase proportionally. On the other hand, we found that increasing the degree of pod infestation produced a wider variation in the individuals’ body size than in low levels of infestation. Finally, we discuss how pod infestation can trigger competition between species, with both positive and negative impacts, even though the species function similarly in resource exploitation. Keywords: Merobruchus terani, Stator maculatopygus, Senegalia tenuifolia, Bruchinae, Negative allometr

    Dung beetles from two sustainable-use protected forests in the Brazilian Amazon

    Get PDF
    The Amazon Forest is one of the world's most biodiverse ecosystems and yet its protected areas are understudied concerning insects and other invertebrates. These organisms are essential for tropical forests due to their ecological processes, with some species being very sensitive to habitat disturbances. Dung beetles (Coleoptera, Scarabaeidae, Scarabaeinae) have been used as bioindicators for more than 30 years and were surveyed to assess the insect biodiversity of two sustainable-use forest reserves in the Brazilian Amazon.We report inventories of dung beetles from two Amazonian forest reserves in Pará State, Brazil: the Tapajós National Forest and the Carajás National Forest. Surveys were carried out with baited-pitfall traps installed in 2010, 2016, 2017 and 2019. We collected a total of 3,772 individuals from 19 genera and 96 species. We highlight the importance of Amazonian protected areas as refugia for insect biodiversity, particularly dung beetles, which contribute to many key ecosystem processes

    The Chalcone Lonchocarpin Inhibits Wnt/β-Catenin Signaling and Suppresses Colorectal Cancer Proliferation

    No full text
    The deregulation of the Wnt/β-catenin signaling pathway is a central event in colorectal cancer progression, thus a promising target for drug development. Many natural compounds, such as flavonoids, have been described as Wnt/β-catenin inhibitors and consequently modulate important biological processes like inflammation, redox balance, cancer promotion and progress, as well as cancer cell death. In this context, we identified the chalcone lonchocarpin isolated from Lonchocarpus sericeus as a Wnt/β-catenin pathway inhibitor, both in vitro and in vivo. Lonchocarpin impairs β-catenin nuclear localization and also inhibits the constitutively active form of TCF4, dnTCF4-VP16. Xenopus laevis embryology assays suggest that lonchocarpin acts at the transcriptional level. Additionally, we described lonchocarpin inhibitory effects on cell migration and cell proliferation on HCT116, SW480, and DLD-1 colorectal cancer cell lines, without any detectable effects on the non-tumoral intestinal cell line IEC-6. Moreover, lonchocarpin reduces tumor proliferation on the colorectal cancer AOM/DSS mice model. Taken together, our results support lonchocarpin as a novel Wnt/β-catenin inhibitor compound that impairs colorectal cancer cell growth in vitro and in vivo
    corecore