822 research outputs found
Metabolic assessment of a novel chronic myelogenous leukemic cell line and an imatinib resistant subline by 1H NMR spectroscopy
The goal of this study was to examine metabolic differences between a novel chronic myelogenous leukemic (CML) cell line, MyL, and a sub-clone, MyL-R, which displays enhanced resistance to the targeted Bcr-Abl tyrosine kinase inhibitor imatinib. 1H nuclear magnetic resonance (NMR) spectroscopy was carried out on cell extracts and conditioned media from each cell type. Both principal component analysis (PCA) and specific metabolite identification and quantification were used to examine metabolic differences between the cell types. MyL cells showed enhanced glucose removal from the media compared to MyL-R cells with significant differences in production rates of the glycolytic end-products, lactate and alanine. Interestingly, the total intracellular creatine pool (creatine + phosphocreatine) was significantly elevated in MyL-R compared to MyL cells. We further demonstrated that the MyL-R cells converted the creatine to phosphocreatine using non-invasive monitoring of perfused alginate-encapsulated MyL-R and MyL cells by in vivo 31P NMR spectroscopy and subsequent HPLC analysis of extracts. Our data demonstrated a clear difference in the metabolite profiles of drug-resistant and sensitive cells, with the biggest difference being an elevation of creatine metabolites in the imatinib-resistant MyL-R cells
BCR and its mutants, the reciprocal t(9;22)-associated ABL/BCR fusion proteins, differentially regulate the cytoskeleton and cell motility
BACKGROUND: The reciprocal (9;22) translocation fuses the bcr (breakpoint cluster region) gene on chromosome 22 to the abl (Abelson-leukemia-virus) gene on chromosome 9. Depending on the breakpoint on chromosome 22 (the Philadelphia chromosome – Ph+) the derivative 9+ encodes either the p40((ABL/BCR) )fusion transcript, detectable in about 65% patients suffering from chronic myeloid leukemia, or the p96((ABL/BCR) )fusion transcript, detectable in 100% of Ph+ acute lymphatic leukemia patients. The ABL/BCRs are N-terminally truncated BCR mutants. The fact that BCR contains Rho-GEF and Rac-GAP functions strongly suggest an important role in cytoskeleton modeling by regulating the activity of Rho-like GTPases, such as Rho, Rac and cdc42. We, therefore, compared the function of the ABL/BCR proteins with that of wild-type BCR. METHODS: We investigated the effects of BCR and ABL/BCRs i.) on the activation status of Rho, Rac and cdc42 in GTPase-activation assays; ii.) on the actin cytoskeleton by direct immunofluorescence; and iii) on cell motility by studying migration into a three-dimensional stroma spheroid model, adhesion on an endothelial cell layer under shear stress in a flow chamber model, and chemotaxis and endothelial transmigration in a transwell model with an SDF-1α gradient. RESULTS: Here we show that both ABL/BCRs lost fundamental functional features of BCR regarding the regulation of small Rho-like GTPases with negative consequences on cell motility, in particular on the capacity to adhere to endothelial cells. CONCLUSION: Our data presented here describe for the first time an analysis of the biological function of the reciprocal t(9;22) ABL/BCR fusion proteins in comparison to their physiological counterpart BCR
Improving Fecal Occult Blood Testing Compliance Using a Mailed Educational Reminder
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths in the United States. Randomized controlled trials have shown that annual screening fecal occult blood testing (FOBT) reduces CRC mortality and incidence. However, patient compliance with FOBT is low.
To determine whether a mailed educational reminder increases FOBT card return rates and to examine predictors of FOBT compliance.
Blinded, randomized, controlled trial at the Veteran Affairs Medical Center, San Diego, California.
Seven hundred and seventy-five consecutive patients ≥50 years of age referred by their primary care physicians for FOBT.
Patients were randomly assigned to the usual care group or the intervention group. Ten days after picking up the FOBT cards, a 1-page reminder with information related to CRC screening was mailed to the intervention group only.
The primary outcome was proportion of returned FOBT cards after 6 months. Patient demographic, clinical characteristics and prior FOBT completed were collected for multivariate regression analysis.
At 6 months after card distribution, 64.6% of patients in the intervention group returned cards compared with 48.4% in the control group (P < 0.001). Patients who received a mailed reminder (OR 2.02; 95% CI: 1.48–2.74) or have a prior history of returning the FOBT cards (OR 1.87; 95% CI: 1.29–2.70) were more likely to return the FOBT cards. Patients with current or recent illicit drug use were less likely to return the FOBT cards (OR 0.26; 95% CI: 0.13–0.50).
A simple mailed educational reminder significantly increases compliance with FOBT for CRC screening
Cost-effectiveness of a mailed educational reminder to increase colorectal cancer screening
<p>Abstract</p> <p>Background</p> <p>Colorectal cancer (CRC) screening rates are low in many areas and cost-effective interventions to promote CRC screening are needed. Recently in a randomized controlled trial, a mailed educational reminder increased CRC screening rates by 16.2% among U.S. Veterans. The aim of our study was to assess the costs and cost-effectiveness of a mailed educational reminder on fecal occult blood test (FOBT) adherence.</p> <p>Methods</p> <p>In a blinded, randomized, controlled trial, 769 patients were randomly assigned to the usual care group (FOBT alone, n = 382) or the intervention group (FOBT plus a mailed reminder, n = 387). Ten days after picking up the FOBT cards, a 1-page reminder with information related to CRC screening was mailed to the intervention group. Primary outcome was number of returned FOBT cards after 6 months. The costs and incremental cost-effectiveness ratio (ICER) of the intervention were assessed and calculated respectively. Sensitivity analyses were based on varying costs of labor and supplies.</p> <p>Results</p> <p>At 6 months after card distribution, 64.6% patients in the intervention group returned FOBT cards compared with 48.4% in the control group (P < 0.001). The total cost of the intervention was 2.49 per patient, and the ICER was 13.50 to $16.50 per additional patient screened for CRC.</p> <p>Conclusions</p> <p>A simple mailed educational reminder increases FOBT card return rate at a cost many health care systems can afford. Compared to other patient-directed interventions (telephone, letters from physicians, mailed reminders) for CRC screening, our intervention was more effective and cost-effective.</p
Circulating tumour cells demonstrate an altered response to hypoxia and an aggressive phenotype
BACKGROUND: Tumours contain hypoxic regions that select for an aggressive cell phenotype; tumour hypoxia induces metastasis-associated genes. Treatment refractory patients with metastatic cancer show increased numbers of circulating tumour cells (CTCs), which are also associated with disease progression. The aim of this study was to examine the as yet unknown relationship between hypoxia and CTCs. METHODS: We generated human MDA-MB-231 orthotopic xenografts and, using a new technology, isolated viable human CTCs from murine blood. The CTCs and parental MDA-MB-231 cells were incubated at 21 and 0.2% (hypoxia) oxygen, respectively. Colony formation was assayed and levels of hypoxia- and anoxia-inducible factors were measured. Xenografts generated from CTCs and parental cells were compared. RESULTS: MDA-MB-231 xenografts used to generate CTCs were hypoxic, expressing hypoxia factors: hypoxia-inducible factor1 alpha (HIF1alpha) and glucose transporter protein type 1 (GLUT1), and anoxia-induced factors: activating transcription factor 3 and 4 (ATF3 and ATF4). Parental MDA-MB-231 cells induced ATF3 in hypoxia, whereas CTCs expressed it constitutively. Asparagine synthetase (ASNS) expression was also higher in CTCs. Hypoxia induced ATF4 and the HIF1alpha target gene apelin in CTCs, but not in parental cells. Hypoxia induced lower levels of carbonic anhydrase IX (CAIX), GLUT1 and BCL2/adenovirus E1B 19-KD protein-interacting protein 3 (BNIP3) proteins in CTCs than in parental cells, supporting an altered hypoxia response. In chronic hypoxia, CTCs demonstrated greater colony formation than parental cells. Xenografts generated from CTCs were larger and heavier, and metastasised faster than MDA-MB-231 xenografts. CONCLUSION: CTCs show an altered hypoxia response and an enhanced aggressive phenotype in vitro and in vivo
O Antigen Allows B. parapertussis to Evade B. pertussis Vaccine–Induced Immunity by Blocking Binding and Functions of Cross-Reactive Antibodies
Although the prevalence of Bordetella parapertussis varies dramatically among studies in different populations with different vaccination regimens, there is broad agreement that whooping cough vaccines, composed only of B. pertussis antigens, provide little if any protection against B. parapertussis. In C57BL/6 mice, a B. pertussis whole-cell vaccine (wP) provided modest protection against B. parapertussis, which was dependent on IFN-γ. The wP was much more protective against an isogenic B. parapertussis strain lacking O-antigen than its wild-type counterpart. O-antigen inhibited binding of wP–induced antibodies to B. parapertussis, as well as antibody-mediated opsonophagocytosis in vitro and clearance in vivo. aP–induced antibodies also bound better in vitro to the O-antigen mutant than to wild-type B. parapertussis, but aP failed to confer protection against wild-type or O antigen–deficient B. parapertussis in mice. Interestingly, B. parapertussis–specific antibodies provided in addition to either wP or aP were sufficient to very rapidly reduce B. parapertussis numbers in mouse lungs. This study identifies a mechanism by which one pathogen escapes immunity induced by vaccination against a closely related pathogen and may explain why B. parapertussis prevalence varies substantially between populations with different vaccination strategies
Time-dependent effects of imatinib in human leukaemia cells: a kinetic NMR-profiling study
The goal of this study was to evaluate the time course of metabolic changes in leukaemia cells treated with the Bcr-Abl tyrosine kinase inhibitor imatinib. Human Bcr-Abl+ K562 cells were incubated with imatinib in a dose-escalating manner (starting at 0.1 μM with a weekly increase of 0.1 μM imatinib) for up to 5 weeks. Nuclear magnetic resonance spectroscopy and liquid-chromatography mass spectrometry were performed to assess a global metabolic profile, including glucose metabolism, energy state, lipid metabolism and drug uptake, after incubation with imatinib. Initially, imatinib treatment completely inhibited the activity of Bcr-Abl tyrosine kinase, followed by the inhibition of cell glycolytic activity and glucose uptake. This was accompanied by the increased mitochondrial activity and energy production. With escalating imatinib doses, the process of cell death rapidly progressed. Phosphocreatine and NAD+ concentrations began to decrease, and mitochondrial activity, as well as the glycolysis rate, was further reduced. Subsequently, the synthesis of lipids as necessary membrane precursors for apoptotic bodies was accelerated. The concentrations of the Kennedy pathway intermediates, phosphocholine and phosphatidylcholine, were reduced. After 4 weeks of exposure to imatinib, the secondary necrosis associated with decrease in the mitochondrial and glycolytic activity occurred and was followed by a shutdown of energy production and cell death. In conclusion, monitoring of metabolic changes in cells exposed to novel signal transduction modulators supplements molecular findings and provides further mechanistic insights into longitudinal changes of the mitochondrial and glycolytic pathways of oncogenesis
Proteomic identification of secreted proteins as surrogate markers for signal transduction inhibitor activity
Epidermal growth factor receptor is a potential target for cancer treatment and new small-molecule tyrosine kinase inhibitor drugs have been designed to inhibit its activity. In this work we identify potential surrogate markers of drug activity using a proteomic analysis. Two-dimensional electrophoresis was optimised to compare expression patterns of proteins secreted from the cancer cell lines A431 and A549 treated with Gefitinib (Iressa) vs untreated or vehicle-only-treated samples. Upregulated or downregulated proteins were detected using Phoretix 2D image analysis software. Several proteins were then identified using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. In one case, upregulation of Protein Disulphide Isomerase in response to Gefitinib was confirmed by Western blot analysis, and the response was shown to be concentration dependent. The identification of surrogate markers may be of use for the evaluation of new drugs, in preclinical models, in clinical trials and in the therapy of individual patients to give optimal biological drug doses
Search for supersymmetric particles in scenarios with a gravitino LSP and stau NLSP
Sleptons, neutralinos and charginos were searched for in the context of
scenarios where the lightest supersymmetric particle is the gravitino. It was
assumed that the stau is the next-to-lightest supersymmetric particle. Data
collected with the DELPHI detector at a centre-of-mass energy near 189 GeV were
analysed combining the methods developed in previous searches at lower
energies. No evidence for the production of these supersymmetric particles was
found. Hence, limits were derived at 95% confidence level.Comment: 31 pages, 14 figure
- …