82 research outputs found

    Opposite transcriptional regulation in skeletal muscle of AMP-activated protein kinase gamma3 R225Q transgenic versus knock-out mice

    Get PDF
    AMP-activated protein kinase (AMPK) is an evolutionarily conserved heterotrimer important for metabolic sensing in all eukaryotes. The muscle-specific isoform of the regulatory gamma-subunit of the kinase, AMPK gamma3, has an important role in glucose uptake, glycogen synthesis, and fat oxidation in white skeletal muscle, as previously demonstrated by physiological characterization of AMPK gamma3 mutant (R225Q) transgenic (TgPrkag3(225Q)) and gamma3 knock-out (Prkag3(-/-)) mice. We determined AMPK gamma3-dependent regulation of gene expression by analyzing global transcription profiles in glycolytic skeletal muscle from gamma3 mutant transgenic and knock-out mice using oligonucleotide microarray technology. Evidence is provided for coordinated and reciprocal regulation of multiple key components in glucose and fat metabolism, as well as skeletal muscle ergogenics in TgPrkag3(225Q) and Prkag3(-/-) mice. The differential gene expression profile was consistent with the physiological differences between the models, providing a molecular mechanism for the observed phenotype. The striking pattern of opposing transcriptional changes between TgPrkag3(225Q) and Prkag3(-/-) mice identifies differentially expressed targets being truly regulated by AMPK and is consistent with the view that R225Q is an activating mutation, in terms of its downstream effects. Additionally, we identified a wide array of novel targets and regulatory pathways for AMPK in skeletal muscle

    Biophysical investigation into the antibacterial action of modelin-5-NH2

    Get PDF
    Modelin-5-CONH2 (M5-NH2) is a synthetic antimicrobial peptide, which was found to show potent activity against Bacillus subtilis (Minimum lethal concentration = 8.47 µM) and to bind strongly to membranes of the organism (Kd = 10.44 µM). The peptide adopted high levels of amphiphilic α-helical structure in the presence of these membranes (> 50 %), which led to high levels of insertion (Δπ ≥ 8.0 mN m-1). M5-NH2 showed high affinity for anionic lipid (Kd = 7.46 µM) and zwitterionic lipid (Kd = 14.7 µM), which drove insertion into membranes formed from these lipids (Δπ = 11.5 and 3.5 mN m-1, respectively). Neutron diffraction studies showed that M5-NH2 inserted into B. subtilis membranes with its N-terminal residue, L16, located 5.5 Å from the membrane centre, in the acyl chain region of these membranes, and promoted a reduction in membrane thickness of circa 1.8 Å or 5 % of membrane width. Insertion into B. subtilis membranes by the peptide also promoted other effects associated with membrane thinning, including increases in membrane surface area (Cs-1 decreases) and fluidity (ΔGmix > 0 to ΔGmix 55%), and it is speculated that the antibacterial action of the peptide may involve the toroidal pore, carpet or tilted-type mechanism of membrane permeabilization

    Role of AMP-Activated Protein Kinase on Steroid Hormone Biosynthesis in Adrenal NCI-H295R Cells

    Get PDF
    Regulation of human androgen biosynthesis is poorly understood. However, detailed knowledge is needed to eventually solve disorders with androgen dysbalance. We showed that starvation growth conditions shift steroidogenesis of human adrenal NCI-H295R cells towards androgen production attributable to decreased HSD3B2 expression and activity and increased CYP17A1 phosphorylation and 17,20-lyase activity. Generally, starvation induces stress and energy deprivation that need to be counteracted to maintain proper cell functions. AMP-activated protein kinase (AMPK) is a master energy sensor that regulates cellular energy balance. AMPK regulates steroidogenesis in the gonad. Therefore, we investigated whether AMPK is also a regulator of adrenal steroidogenesis. We hypothesized that starvation uses AMPK signaling to enhance androgen production in NCI-H295R cells. We found that AMPK subunits are expressed in NCI-H295 cells, normal adrenal tissue and human as well as pig ovary cells. Starvation growth conditions decreased phosphorylation, but not activity of AMPK in NCI-H295 cells. In contrast, the AMPK activator 5-aminoimidazole-4-carboxamide (AICAR) increased AMPKα phosphorylation and increased CYP17A1-17,20 lyase activity. Compound C (an AMPK inhibitor), directly inhibited CYP17A1 activities and can therefore not be used for AMPK signaling studies in steroidogenesis. HSD3B2 activity was neither altered by AICAR nor compound C. Starvation did not affect mitochondrial respiratory chain function in NCI-H295R cells suggesting that there is no indirect energy effect on AMPK through this avenue. In summary, starvation-mediated increase of androgen production in NCI-H295 cells does not seem to be mediated by AMPK signaling. But AMPK activation can enhance androgen production through a specific increase in CYP17A1-17,20 lyase activity

    Gain-of-Function R225W Mutation in Human AMPKγ3 Causing Increased Glycogen and Decreased Triglyceride in Skeletal Muscle

    Get PDF
    BACKGROUND: AMP-activated protein kinase (AMPK) is a heterotrimeric enzyme that is evolutionarily conserved from yeast to mammals and functions to maintain cellular and whole body energy homeostasis. Studies in experimental animals demonstrate that activation of AMPK in skeletal muscle protects against insulin resistance, type 2 diabetes and obesity. The regulatory gamma(3) subunit of AMPK is expressed exclusively in skeletal muscle; however, its importance in controlling overall AMPK activity is unknown. While evidence is emerging that gamma subunit mutations interfere specifically with AMP activation, there remains some controversy regarding the impact of gamma subunit mutations. Here we report the first gain-of-function mutation in the muscle-specific regulatory gamma(3) subunit in humans. METHODS AND FINDINGS: We sequenced the exons and splice junctions of the AMPK gamma(3) gene (PRKAG3) in 761 obese and 759 lean individuals, identifying 87 sequence variants including a novel R225W mutation in subjects from two unrelated families. The gamma(3) R225W mutation is homologous in location to the gamma(2)R302Q mutation in patients with Wolf-Parkinson-White syndrome and to the gamma(3)R225Q mutation originally linked to an increase in muscle glycogen content in purebred Hampshire Rendement Napole (RN-) pigs. We demonstrate in differentiated muscle satellite cells obtained from the vastus lateralis of R225W carriers that the mutation is associated with an approximate doubling of both basal and AMP-activated AMPK activities. Moreover, subjects bearing the R225W mutation exhibit a approximately 90% increase of skeletal muscle glycogen content and a approximately 30% decrease in intramuscular triglyceride (IMTG). CONCLUSIONS: We have identified for the first time a mutation in the skeletal muscle-specific regulatory gamma(3) subunit of AMPK in humans. The gamma(3)R225W mutation has significant functional effects as demonstrated by increases in basal and AMP-activated AMPK activities, increased muscle glycogen and decreased IMTG. Overall, these findings are consistent with an important regulatory role for AMPK gamma(3) in human muscle energy metabolism

    The effect of age and unilateral leg immobilisation for 2 weeks on substrate ulilisation during moderate-intensity exercise in human skeletal muscle

    Get PDF
    Age and inactivity have been associated with intramuscular triglyceride (IMTG) accumulation. Here, we attempt to disentangle these factors by studying the effect of 2 weeks of unilateral leg immobilization on substrate utilization across the legs during moderate-intensity exercise in young (n = 17; 23 ± 1 years old) and older men (n = 15; 68 ± 1 years old), while the contralateral leg served as the control. After immobilization, the participants performed two-legged isolated knee-extensor exercise at 20±1W(_50% maximalwork capacity) for 45 min with catheters inserted in the brachial artery and both femoral veins.Biopsy samples obtained from vastus lateralis muscles of both legs before and after exercise were used for analysis of substrates, protein content and enzyme activities. During exercise, leg substrate utilization (respiratoryquotient) did not differ between groups or legs. Leg fatty acid uptake was greater in older than in young men, and although young men demonstrated net leg glycerol release during exercise, older men showed net glycerol uptake. At baseline, IMTG, muscle pyruvate dehydrogenase complex activity and the protein content of adipose triglyceride lipase, acetyl-CoA carboxylase 2 and AMP-activated protein kinase (AMPK)γ3 were higher in young than in older men. Furthermore, adipose triglyceride lipase, plasma membrane-associated fatty acid binding protein and AMPKγ3 subunit protein contents were lower and IMTG was higher in the immobilized than the contralateral leg in young and older men. Thus, immobilization and age did not affect substrate choice (respiratory quotient) during moderate exercise, but the whole-leg and molecular differences in fatty acid mobilization could explain the age- and immobilization-induced IMTG accumulation

    Review of genetic factors in intestinal malrotation

    Get PDF
    Intestinal malrotation is well covered in the surgical literature from the point of view of operative management, but few reviews to date have attempted to provide a comprehensive examination of the topic from the point of view of aetiology, in particular genetic aetiology. Following a brief overview of molecular embryology of midgut rotation, we present in this article instances of and case reports and case series of intestinal malrotation in which a genetic aetiology is likely. Autosomal dominant, autosomal recessive, X-linked and chromosomal forms of the disorder are represented. Most occur in syndromic form, that is to say, in association with other malformations. In many instances, recognition of a specific syndrome is possible, one of several examples discussed being the recently described association of intestinal malrotation with alveolar capillary dysplasia, due to mutations in the forkhead box transcription factor FOXF1. New advances in sequencing technology mean that the identification of the genes mutated in these disorders is more accessible than ever, and paediatric surgeons are encouraged to refer to their colleagues in clinical genetics where a genetic aetiology seems likely

    Interaction between Axons and Specific Populations of Surrounding Cells Is Indispensable for Collateral Formation in the Mammillary System

    Get PDF
    An essential phenomenon during brain development is the extension of long collateral branches by axons. How the local cellular environment contributes to the initial sprouting of these branches in specific points of an axonal shaft remains unclear.The principal mammillary tract (pm) is a landmark axonal bundle connecting ventral diencephalon to brainstem (through the mammillotegmental tract, mtg). Late in development, the axons of the principal mammillary tract sprout collateral branches at a very specific point forming a large bundle whose target is the thalamus. Inspection of this model showed a number of distinct, identified cell populations originated in the dorsal and the ventral diencephalon and migrating during development to arrange themselves into several discrete groups around the branching point. Further analysis of this system in several mouse lines carrying mutant alleles of genes expressed in defined subpopulations (including Pax6, Foxb1, Lrp6 and Gbx2) together with the use of an unambiguous genetic marker of mammillary axons revealed: 1) a specific group of Pax6-expressing cells in close apposition with the prospective branching point is indispensable to elicit axonal branching in this system; and 2) cooperation of transcription factors Foxb1 and Pax6 to differentially regulate navigation and fasciculation of distinct branches of the principal mammillary tract.Our results define for the first time a model system where interaction of the axonal shaft with a specific group of surrounding cells is essential to promote branching. Additionally, we provide insight on the cooperative transcriptional regulation necessary to promote and organize an intricate axonal tree

    Transcription profiling of lung adenocarcinomas of c-myc-transgenic mice: Identification of the c-myc regulatory gene network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transcriptional regulator c-Myc is the most frequently deregulated oncogene in human tumors. Targeted overexpression of this gene in mice results in distinct types of lung adenocarcinomas. By using microarray technology, alterations in the expression of genes were captured based on a female transgenic mouse model in which, indeed, c-Myc overexpression in alveolar epithelium results in the development of bronchiolo-alveolar carcinoma (BAC) and papillary adenocarcinoma (PLAC). In this study, we analyzed exclusively the promoters of induced genes by different in silico methods in order to elucidate the c-Myc transcriptional regulatory network.</p> <p>Results</p> <p>We analyzed the promoters of 361 transcriptionally induced genes with respect to c-Myc binding sites and found 110 putative binding sites in 94 promoters. Furthermore, we analyzed the flanking sequences (+/- 100 bp) around the 110 c-Myc binding sites and found Ap2, Zf5, Zic3, and E2f binding sites to be overrepresented in these regions. Then, we analyzed the promoters of 361 induced genes with respect to binding sites of other transcription factors (TFs) which were upregulated by c-Myc overexpression. We identified at least one binding site of at least one of these TFs in 220 promoters, thus elucidating a potential transcription factor network. The analysis correlated well with the significant overexpression of the TFs Atf2, Foxf1a, Smad4, Sox4, Sp3 and Stat5a. Finally, we analyzed promoters of regulated genes which where apparently not regulated by c-Myc or other c-Myc targeted TFs and identified overrepresented Oct1, Mzf1, Ppargamma, Plzf, Ets, and HmgIY binding sites when compared against control promoter background.</p> <p>Conclusion</p> <p>Our in silico data suggest a model of a transcriptional regulatory network in which different TFs act in concert upon c-Myc overexpression. We determined molecular rules for transcriptional regulation to explain, in part, the carcinogenic effect seen in mice overexpressing the c-Myc oncogene.</p
    corecore