23 research outputs found
An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles
Currently, the complete chemical characterization of nanoparticles (<â100ânm) represents an analytical challenge, since these particles are abundant in number but have negligible mass. Several methods for particle-phase characterization have been recently developed to better detect and infer more accurately the sources and fates of sub-100ânm particles, but a detailed comparison of different approaches is missing. Here we report on the chemical composition of secondary organic aerosol (SOA) nanoparticles from experimental studies of α-pinene ozonolysis at â50, â30, and â10ââC and intercompare the results measured by different techniques. The experiments were performed at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). The chemical composition was measured simultaneously by four different techniques: (1) thermal desorptionâdifferential mobility analyzer (TDâDMA) coupled to a NO chemical ionizationâatmospheric-pressure-interfaceâtime-of-flight (CIâAPiâTOF) mass spectrometer, (2) filter inlet for gases and aerosols (FIGAERO) coupled to an I high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS), (3) extractive electrospray Na ionization time-of-flight mass spectrometer (EESI-TOF), and (4) offline analysis of filters (FILTER) using ultra-high-performance liquid chromatography (UHPLC) and heated electrospray ionization (HESI) coupled to an Orbitrap high-resolution mass spectrometer (HRMS). Intercomparison was performed by contrasting the observed chemical composition as a function of oxidation state and carbon number, by estimating the volatility and comparing the fraction of volatility classes, and by comparing the thermal desorption behavior (for the thermal desorption techniques: TDâDMA and FIGAERO) and performing positive matrix factorization (PMF) analysis for the thermograms. We found that the methods generally agree on the most important compounds that are found in the nanoparticles. However, they do see different parts of the organic spectrum. We suggest potential explanations for these differences: thermal decomposition, aging, sampling artifacts, etc. We applied PMF analysis and found insights of thermal decomposition in the TDâDMA and the FIGAERO
Recommended from our members
High Gas-Phase Methanesulfonic Acid Production in the OH-Initiated Oxidation of Dimethyl Sulfide at Low Temperatures
Dimethyl sulfide (DMS) influences climate via cloud condensation nuclei (CCN) formation resulting from its oxidation products (mainly methanesulfonic acid, MSA, and sulfuric acid, H2SO4). Despite their importance, accurate prediction of MSA and H2SO4from DMS oxidation remains challenging. With comprehensive experiments carried out in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at CERN, we show that decreasing the temperature from +25 to -10 °C enhances the gas-phase MSA production by an order of magnitude from OH-initiated DMS oxidation, while H2SO4production is modestly affected. This leads to a gas-phase H2SO4-to-MSA ratio (H2SO4/MSA) smaller than one at low temperatures, consistent with field observations in polar regions. With an updated DMS oxidation mechanism, we find that methanesulfinic acid, CH3S(O)OH, MSIA, forms large amounts of MSA. Overall, our results reveal that MSA yields are a factor of 2-10 higher than those predicted by the widely used Master Chemical Mechanism (MCMv3.3.1), and the NOxeffect is less significant than that of temperature. Our updated mechanism explains the high MSA production rates observed in field observations, especially at low temperatures, thus, substantiating the greater importance of MSA in the natural sulfur cycle and natural CCN formation. Our mechanism will improve the interpretation of present-day and historical gas-phase H2SO4/MSA measurements
High Gas-Phase Methanesulfonic Acid Production in the OH-Initiated Oxidation of Dimethyl Sulfide at Low Temperatures
Dimethyl sulfide (DMS) influences climate via cloud condensation nuclei (CCN) formation resulting from its oxidation products (mainly methanesulfonic acid, MSA, and sulfuric acid, HSO). Despite their importance, accurate prediction of MSA and HSO from DMS oxidation remains challenging. With comprehensive experiments carried out in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at CERN, we show that decreasing the temperature from +25 to â10 °C enhances the gas-phase MSA production by an order of magnitude from OH-initiated DMS oxidation, while HSO production is modestly affected. This leads to a gas-phase HSO-to-MSA ratio (HSO/MSA) smaller than one at low temperatures, consistent with field observations in polar regions. With an updated DMS oxidation mechanism, we find that methanesulfinic acid, CHS(O)OH, MSIA, forms large amounts of MSA. Overall, our results reveal that MSA yields are a factor of 2â10 higher than those predicted by the widely used Master Chemical Mechanism (MCMv3.3.1), and the NO effect is less significant than that of temperature. Our updated mechanism explains the high MSA production rates observed in field observations, especially at low temperatures, thus, substantiating the greater importance of MSA in the natural sulfur cycle and natural CCN formation. Our mechanism will improve the interpretation of present-day and historical gas-phase HSO/MSA measurements
Synergistic HNOâHSOâNH upper tropospheric particle formation
New particle formation in the upper free troposphere is a major global source of cloud condensation nuclei (CCN). However, the precursor vapours that drive the process are not well understood. With experiments performed under upper tropospheric conditions in the CERN CLOUD chamber, we show that nitric acid, sulfuric acid and ammonia form particles synergistically, at rates that are orders of magnitude faster than those from any two of the three components. The importance of this mechanism depends on the availability of ammonia, which was previously thought to be efficiently scavenged by cloud droplets during convection. However, surprisingly high concentrations of ammonia and ammonium nitrate have recently been observed in the upper troposphere over the Asian monsoon region5,6. Once particles have formed, co-condensation of ammonia and abundant nitric acid alone is sufficient to drive rapid growth to CCN sizes with only trace sulfate. Moreover, our measurements show that these CCN are also highly efficient ice nucleating particlesâcomparable to desert dust. Our model simulations confirm that ammonia is efficiently convected aloft during the Asian monsoon, driving rapid, multi-acid HNOâHSOâNH nucleation in the upper troposphere and producing ice nucleating particles that spread across the mid-latitude Northern Hemisphere
High Gas-Phase Methanesulfonic Acid Production in the OH-Initiated Oxidation of Dimethyl Sulfide at Low Temperatures
Dimethyl sulfide (DMS) influences climate via cloud condensation nuclei (CCN) formation resulting from its oxidation products (mainly methanesulfonic acid, MSA, and sulfuric acid, H2SO4). Despite their importance, accurate prediction of MSA and H2SO4from DMS oxidation remains challenging. With comprehensive experiments carried out in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at CERN, we show that decreasing the temperature from +25 to -10 °C enhances the gas-phase MSA production by an order of magnitude from OH-initiated DMS oxidation, while H2SO4production is modestly affected. This leads to a gas-phase H2SO4-to-MSA ratio (H2SO4/MSA) smaller than one at low temperatures, consistent with field observations in polar regions. With an updated DMS oxidation mechanism, we find that methanesulfinic acid, CH3S(O)OH, MSIA, forms large amounts of MSA. Overall, our results reveal that MSA yields are a factor of 2-10 higher than those predicted by the widely used Master Chemical Mechanism (MCMv3.3.1), and the NOxeffect is less significant than that of temperature. Our updated mechanism explains the high MSA production rates observed in field observations, especially at low temperatures, thus, substantiating the greater importance of MSA in the natural sulfur cycle and natural CCN formation. Our mechanism will improve the interpretation of present-day and historical gas-phase H2SO4/MSA measurements.Peer reviewe
Conditional generation of cloud fields
Processes related to cloud physics constitute the largest remaining
scientific uncertainty in climate models and projections. This uncertainty
stems from the coarse nature of current climate models and relatedly the lack
of understanding of detailed physics. We train a generative adversarial network
to generate realistic cloud fields conditioned on meterological reanalysis data
for both climate model outputs as well as satellite imagery. While our network
is able to generate realistic cloud fields, especially their large-scale
patterns, more work is needed to refine its accuracy to resolve finer textural
details of cloud masses to improve its predictions
The Radiative and Cloud Responses to Sea Salt Aerosol Engineering in GFDL Models
Abstract Marine cloud brightening is a proposal to counteract global warming by increasing sea salt aerosol emissions. In theory, this increases the cloud droplet number concentration of subtropical marine stratocumulus decks, increasing cloud brightness and longevity. However, this theoretical progression remains uncertain in coupled climate models, especially the response of liquid water path and cloud fraction to aerosol seeding. We use the GFDL CM4 climate model to simulate marine cloud brightening following the published G4seaâsalt protocol, in which sea salt aerosol emissions are uniformly increased over 30Â Sâ30Â N in addition to standard forcings from a SSP2â4.5 future warming scenario. The perturbed radiative and cloud responses are temporally stable though spatially heterogeneous, and direct scattering by the added sea salt predominates over changes to cloud reflectance. In fact, feedbacks in the coupled simulation lead to a net warming, rather than cooling, response by clouds
Breathable Vapor Toxicant Barriers Based on Multilayer Graphene Oxide
There
is tremendous interest in graphene-based membranes as protective
molecular barriers or molecular sieves for separation technologies.
Graphene oxide (GO) films in the dry state are known to be effective
barriers for molecular transport and to expand in the presence of
moisture to create enlarged intersheet gallery spaces that allow rapid
water permeation. Here we explore an application for GO membranes
as water-breathable barrier layers for personal protective equipment,
which are designed to allow outward perspiration while protecting
the wearer from chemical toxicants or biochemical agents in the local
environment. A device was developed to measure permeation rates of
small-molecular toxicants in the presence of counter-current water
flow simulating active perspiration. The technique was applied to
trichloroethylene (TCE) and benzene, which are important environmental
toxicants, and ethanol as a limiting case to model very small, highly
water-soluble organic molecules. Submicron GO membranes are shown
to be effective TCE barriers, both in the presence and absence of
simulated perspiration flux, and to outperform current barrier technologies.
A molecular transport model is developed, which suggests the limited
toxicant back-permeation observed occurs not by diffusion against
the convective perspiration flow in hydrophobic channels, but rather
through oxidized domains where hydrogen-bonding produces a near-stagnant
water phase. Benzene and ethanol permeation fluxes are higher than
those for TCE, likely reflecting the effects of higher water solubility
and smaller minimum molecular dimension. Overall, GO films have high
water breathability relative to competing technologies and are known
to exclude most classes of target toxicants, including particles,
bacteria, viruses, and macromolecules. The present results show good
barrier performance for some very small-molecule species, but not
others, with permeation being favored by high water solubility and
small minimum molecular dimension