468 research outputs found

    Randomised positive control trial of NSAID and antimicrobial treatment for calf fever caused by pneumonia

    Get PDF
    One hundred and fifty-four preweaning calves were followed between May and October 2015. Calves were fitted with continuous monitoring temperature probes (TempVerified FeverTag), programmed so a flashing light emitting diode (LED) light was triggered following six hours of a sustained ear canal temperature of ≥39.7°C. A total of 83 calves (61.9 per cent) developed undifferentiated fever, with a presumptive diagnosis of pneumonia through exclusion of other calf diseases. Once fever was detected, calves were randomly allocated to treatment groups. Calves in group 1 (NSAID) received 2 mg/kg flunixin meglumine (Allevinix, Merial) for three consecutive days and group 2 (antimicrobial) received 6 mg/kg gamithromycin (Zactran, Merial). If fever persisted for 72 hours after the initial treatment, calves were given further treatment (group 1 received antimicrobial and group 2 received NSAID). Calves in group 1 (NSAID) were five times more likely (P=0.002) to require a second treatment (the antimicrobial) after 72 hours to resolve the fever compared with the need to give group 2 (antimicrobial) calves a second treatment (NSAID). This demonstrates the importance of ongoing monitoring and follow-up of calves with respiratory disease. However, of calves with fever in group 1 (NSAID), 25.7 per cent showed resolution following NSAID-only treatment with no detrimental effect on the development of repeated fever or daily live weight gain. This suggests that NSAID alone may be a useful first-line treatment, provided adequate attention is given to ongoing monitoring to identify those cases that require additional antimicrobial treatment

    Endovascular Management of Traumatic Iliac Vessel Disruption—Report of Two Cases

    Get PDF
    AbstractVascular injuries in a multi-trauma patient are associated with significant cardiovascular instability and organ injury. Injuries with active bleeding are best treated with a quick, safe and the least less invasive procedure available to the trauma surgeon. We report two cases of blunt trauma induced common and external iliac vessel injury, managed by endovascular treatment. In the second case, endovascular treatment prevented histological examination of the artery, which would have revealed an alternative diagnosis

    Illustrating a new global-scale approach to estimating potential reduction in fish species richness due to flow alteration

    Get PDF
    Changes in river discharge due to human activities and climate change would affect the sustainability of freshwater ecosystems. To globally assess how changes in river discharge will affect the future status of freshwater ecosystems, global-scale hydrological simulations need to be connected with a model to estimate the durability of freshwater ecosystems. However, the development of this specific modelling combination for the global scale is still in its infancy. In this study, two statistical methods are introduced to link flow regimes to fish species richness (FSR): one is based on a linear relationship between FSR and mean river discharge (hereafter, FSR-MAD method), and the other is based on a multi-linear relationship between FSR and ecologically relevant flow indices involving several other flow characteristics and mean river discharge (FSR-FLVAR method). The FSR-MAD method has been used previously in global simulation studies. The FSR-FLVAR method is newly introduced here. These statistical methods for estimating FSR were combined with a set of global river discharge simulations to evaluate the potential impact of climate-change-induced flow alterations on FSR changes. Generally, future reductions in FSR with the FSR-FLVAR method are greater and much more scattered than with the FSR-MAD method. In arid regions, both methods indicate reductions in FSR because mean discharge is projected to decrease from past to future, although the magnitude of reductions in FSR is different between the two methods. In contrast, in heavy-snow regions a large reduction in FSR is shown by the FSR-FLVAR method due to increases in the frequency of low and high flows. Although further research is clearly needed to conclude which method is more appropriate, this study demonstrates that the FSR-FLVAR method could produce considerably different results when assessing the global role of flow alterations in changing freshwater ecosystems

    A Brief Review on Thermal Behaviour of PANI as Additive in Heat Transfer Fluid

    Get PDF
    Since a decade ago, investigation on nanofluids has grown significantly owing to its enhanced thermal properties compared to conventional heat transfer fluids. This engineered nanofluid has been widely used in the thermal engineering system to improve their energy consumption by improving the thermal efficiency of the system. The addition of nano-size particles as additives dispersed in the base fluids proved to significantly either improve or diminish the behaviour of the base fluids. The behaviour of the base fluid highly depends on the properties of the additives material, such as morphology, size, and volume fraction. Among the variety of nanoparticles studied, the conducting polymers have been subject of high interest due to its high environmental stability, good electrical conductivity, antimicrobial, anti-corrosion property and significantly cheap compared to other nanoparticles. As such, the main objective of the present review is to provide an overview of the work performed on thermal properties performance of conducting polymers based nanofluids

    Electrochemical Deposited Nickel Nanowires: Influence of Deposition Bath Temperature on the Morphology and Physical Properties

    Get PDF
    This paper investigates the influence of the electrolytic bath temperature on the morphology and physical properties of nickel (Ni) nanowires electrochemically deposited into the anodic alumina oxide porous membrane (AAO). The synthesis was performed using nickel sulfate hexahydrate (NiSO4.6H2O) and boric acid (H3BO3) as an electrolytic bath for the electrochemical deposition of Ni nanowires. During the experiment, the electrolyte bath temperature varied from 40°C, 80°C, and 120°C. After the electrochemical deposition process, AAO templates cleaned with distilled water preceding to dissolution in sodium hydroxide (NaOH) solution to obtain free-standing Ni nanowires. Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDX) and X-ray Diffraction (XRD) analysis were employed to characterize the morphology and physical properties of the synthesized Ni nanowires. Finding reveals the electrodeposition bath temperature significantly influences the morphology and physical properties of the synthesized Ni nanowires. Rougher surface texture, larger crystal size, and longer Ni nanowires obtained as the deposition bath temperature increased

    Identifying factors associated with sedentary time after stroke. Secondary analysis of pooled data from nine primary studies.

    Get PDF
    <p><b>Background</b>: High levels of sedentary time increases the risk of cardiovascular disease, including recurrent stroke.</p> <p><b>Objective</b>: This study aimed to identify factors associated with high sedentary time in community-dwelling people with stroke.</p> <p><b>Methods</b>: For this data pooling study, authors of published and ongoing trials that collected sedentary time data, using the activPAL monitor, in community-dwelling people with stroke were invited to contribute their raw data. The data was reprocessed, algorithms were created to identify sleep-wake time and determine the percentage of waking hours spent sedentary. We explored demographic and stroke-related factors associated with total sedentary time and time in uninterrupted sedentary bouts using unique, both univariable and multivariable, regression analyses.</p> <p><b>Results</b>: The 274 included participants were from Australia, Canada, and the United Kingdom, and spent, on average, 69% (SD 12.4) of their waking hours sedentary. Of the demographic and stroke-related factors, slower walking speeds were significantly and independently associated with a higher percentage of waking hours spent sedentary (p = 0.001) and uninterrupted sedentary bouts of <i>>30</i> and <i>>60 min</i> (p = 0.001 and p = 0.004, respectively). Regression models explained 11–19% of the variance in total sedentary time and time in prolonged sedentary bouts.</p> <p><b>Conclusion</b>: We found that variability in sedentary time of people with stroke was largely unaccounted for by demographic and stroke-related variables. Behavioral and environmental factors are likely to play an important role in sedentary behavior after stroke. Further work is required to develop and test effective interventions to address sedentary behavior after stroke.</p

    Sliding principal component and dynamic reward reinforcement learning based IIoT attack detection

    Get PDF
    The Internet of Things (IoT) involves the gathering of all those devices that connect to the Internet with the purpose of collecting and sharing data. The application of IoT in the different sectors, including health, industry has also picked up the threads to augment over the past few years. The IoT and, by integrity, the IIoT, are found to be highly susceptible to different types of threats and attacks owing to the networks nature that in turn leads to even poor outcomes (i.e., increasing error rate). Hence, it is critical to design attack detection systems that can provide the security of IIoT networks. To overcome this research work of IIoT attack detection in large amount of evolutions is failed to determine the certain attacks resulting in a minimum detection performance, reinforcement learning-based attack detection method called sliding principal component and dynamic reward reinforcement learning (SPC-DRRL) for detecting various IIoT network attacks is introduced. In the first stage of this research methodology, preprocessing of raw TON_IoT dataset is performed by employing min-max normalization scaling function to obtain normalized values with same scale. Next, with the processed sample data as output, to extract data from multi-sources (i.e., different service profiles from the dataset), a robust log likelihood sliding principal component-based feature extraction algorithm is applied with an arbitrary size sliding window to extract computationally-efficient features. Finally, dynamic reward reinforcement learning-based IIoT attack detection model is presented to control the error rate involved in the design. Here, with the design of dynamic reward function and introducing incident repository that not only generates the reward function in an arbitrary fashion but also stores the action results in the incident repository for the next training, therefore reducing the attack detection error rate. Moreover, an IIoT attack detection system based on SPC-DRRL is constructed. Finally, we verify the algorithm on the ToN_IoT dataset of University of New South Wales Australia. The experimental results show that the IIoT attack detection time and overhead along with the error rate are reduced considerably with higher accuracy than that of traditional reinforcement learning methods

    Template Synthesis of Ni Nanowires: Characterization and Modelling

    Get PDF
    Template-assisted electrochemical deposition is a straight forward approach for the synthesis of 1D nanostructures (e.g., nanowire, nanorod, and nanobelt) with controllable morphology. This approach is suitable for mass production as it works at ambient pressure and temperature with the properties of synthesized 1D nanostructures being influenced by synthesis conditions during the electrochemical deposition process. This work aims to investigate the influence of stabilizing agent concentration and heating temperature towards the physical behavior of Nickel (Ni) nanowires synthesized via a template-assisted electrochemical deposition approach. In this research, the electrolyte bath was prepared in three different concentrations of the stabilizing agent (6 g/L, 40 g/L and 70 g/L), and the deposition bath temperature used was 30°C, 70°C, and 110°C respectively. The elemental composition was determined using Energy Dispersive X-ray (EDX) analysis to investigate the percentage of pure Ni element in the synthesized nanowires. The diameter, surface texture, and growth length of the synthesized Ni nanowires were characterized using Field Emission Scanning Electron Microscope (FESEM). X-ray diffractions (XRD) was used for crystal size and crystal orientation analysis. Additionally, the mechanical properties of Ni nanowires were extracted via molecular dynamic simulation. Growth length of Ni nanowires found to be significantly improved as the heating temperature increased, but it decreased when stabilizer agent concentration is high. The diffraction patterns for all synthesis conditions exhibited the synthesis Ni nanowires are polycrystalline as the crystalline planes with Miller indices of 111, 200, and 220. All the investigated nanowires showed ductile failure behavior, a typical behavior at larger length scales of Ni

    Genetic predisposition to adiposity is associated with increased objectively assessed sedentary time in young children.

    Get PDF
    Increased sedentariness has been linked to the growing prevalence of obesity in children, but some longitudinal studies suggest that sedentariness may be a consequence rather than a cause of increased adiposity. We used Mendelian randomization to examine the causal relations between body mass index (BMI) and objectively assessed sedentary time and physical activity in 3-8 year-old children from one Finnish and two Danish cohorts [NTOTAL=679]. A genetic risk score (GRS) comprised of 15 independent genetic variants associated with childhood BMI was used as the instrumental variable to test causal effects of BMI on sedentary time, total physical activity, and moderate-to-vigorous physical activity (MVPA). In fixed effects meta-analyses, the GRS was associated with 0.05 SD/allele increase in sedentary time (P=0.019), but there was no significant association with total physical activity (beta=0.011 SD/allele, P=0.58) or MVPA (beta=0.001 SD/allele, P=0.96), adjusting for age, sex, monitor wear-time and first three genome-wide principal components. In two-stage least squares regression analyses, each genetically instrumented one unit increase in BMI z-score increased sedentary time by 0.47 SD (P=0.072). Childhood BMI may have a causal influence on sedentary time but not on total physical activity or MVPA in young children. Our results provide important insights into the regulation of movement behaviour in childhood

    The impact of time to death in donors after circulatory death on recipient outcome in simultaneous pancreas-kidney transplantation

    Get PDF
    \ua9 2024 The AuthorsThe time to arrest donors after circulatory death is unpredictable and can vary. This leads to variable periods of warm ischemic damage prior to pancreas transplantation. There is little evidence supporting procurement team stand-down times based on donor time to death (TTD). We examined what impact TTD had on pancreas graft outcomes following donors after circulatory death (DCD) simultaneous pancreas-kidney transplantation. Data were extracted from the UK transplant registry from 2014 to 2022. Predictors of graft loss were evaluated using a Cox proportional hazards model. Adjusted restricted cubic spline models were generated to further delineate the relationship between TTD and outcome. Three-hundred-and-seventy-five DCD simultaneous kidney-pancreas transplant recipients were included. Increasing TTD was not associated with graft survival (adjusted hazard ratio HR 0.98, 95% confidence interval 0.68-1.41, P = .901). Increasing asystolic time worsened graft survival (adjusted hazard ratio 2.51, 95% confidence interval 1.16-5.43, P = .020). Restricted cubic spline modeling revealed a nonlinear relationship between asystolic time and graft survival and no relationship between TTD and graft survival. We found no evidence that TTD impacts pancreas graft survival after DCD simultaneous pancreas-kidney transplantation; however, increasing asystolic time was a significant predictor of graft loss. Procurement teams should attempt to minimize asystolic time to optimize pancreas graft survival rather than focus on the duration of TTD
    • …
    corecore