80 research outputs found

    The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed.</p> <p>Results</p> <p>Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented.</p> <p>Conclusions</p> <p>This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps.</p

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    A new mic slot-line aerial

    No full text

    Synthesis of 1,3-dimethyl-1,3-dicarboxycyclohexane-2-acetic acid. An isomer of the degradation product of abietic acid

    No full text
    A synthesis of 1,3-dimethyl-1,3-dicarboxycyclohexane-2-acetic acid has been described, and proved to be an isomer of the C12-acid-an oxidative degradation product of abietic acid

    Estimation of degraded laminate composite properties using acoustic wave propagation model and a reduction-prediction network

    No full text
    Purpose - To develop a new method for estimation of damage configuration in composite laminate structure using acoustic wave propagation signal and a reduction-prediction neural network to deal with high dimensional spectral data. Design/methodology/approach - A reduction-prediction network, which is a combination of an independent component analysis (ICA) and a multi-layer perceptron (MLP) neural network, is proposed to quantify the damage state related to transverse matrix cracking in composite laminates using acoustic wave propagation model. Given the Fourier spectral response of the damaged structure under frequency band-selective excitation, the problem is posed as a parameter estimation problem. The parameters are the stiffness degradation factors, location and approximate size of the stiffness-degraded zone. A micro-mechanics model based on damage evolution criteria is incorporated in a spectral finite element model (SFEM) for beam type structure to study the effect of transverse matrix crack density on the acoustic wave response. Spectral data generated by using this model is used in training and testing the network. The ICA network called as the reduction network, reduces the dimensionality of the broad-band spectral data for training and testing and sends its output as input to the MLP network. The MLP network, in turn, predicts the damage parameters. Findings - Numerical demonstration shows that the developed network can efficiently handle high dimensional spectral data and estimate the damage state, damage location and size accurately. Research limitations/implications - Only numerical validation based on a damage model is reported in absence of experimental data. Uncertainties during actual online health monitoring may produce errors in the network output. Fault-tolerance issues are not attempted. The method needs to be tested using measured spectral data using multiple sensors and wide variety of damages. Practical implications - The developed network and estimation methodology can be employed in practical structural monitoring system, such as for monitoring critical composite structure components in aircrafts, spacecrafts and marine vehicles. Originality/value - A new method is reported in the paper, which employs the previous works of the authors on SFEM and neural network. The paper addresses the important problem of high data dimensionality, which is of significant importance from practical engineering application viewpoint

    Antidepressants in the elderly: a review

    No full text

    Estimation of composite damage model parameters using spectral finite element and neural network

    No full text
    A multi-layer perceptron (MLP) network using error back propagation algorithm is employed in this paper to estimate the damage parameters from broad-band spectral data as diagnostic signal. Various existing models of damage in laminated composite and the resulting stiffness degradation are discussed from comparative view-point. Degradation of ply properties can be considered to be one of the damage model parameters while monitoring transverse matrix cracks in cross-ply, splitting in longitudinal ply, and evolution of consecutive stages of damage, such as delaminations and fiber fracture. The stiffness degradation factor, the location and size of the damaged zone in laminated composite beam are considered as damage model parameters in the present paper. Fourier spectral data, which is typical to most of the diagnostic wave measurements, are used as input to the neural network. Since, training the neural network in such case involves many data sets and all of these data are difficult to generate using experiments, a spectral finite element model (SFEM) with embedded degraded zone in laminated composite beam is developed. Numerical simulation using this element is carried out, which shows the nature of temporal signal that are likely to be measured. Analytical studies on the performance of the neural network are presented based on numerically simulated data. Effect of measurement noise on the network performance is also reported
    corecore