21 research outputs found

    Oxygen mass transfer studies on batch cultivation of P. aeruginosa in a biocalorimeter

    Get PDF
    In the present work volumetric mass transfer coefficient (kLa) was investigated during batch cultivations of Pseudomonas aeruginosa on a nutrient media. The effects of process variables (viz. impeller speed, oxygen flow and geometry of impeller) on the volumetric mass transfer coefficient of oxygen, kLa, in a biocalorimeter (Bio-RC1) was investigated and reported in this research work. The experimental data have been analyzed employing MATLAB to obtain the influences of the process parameters on kLa. An attempt was made to correlate volumetric mass transfer coefficient with metabolic heat production rate at optimized process conditions. The correlation reported in this work would be useful to control and scale up of bioprocesses

    Privacy Aware Experiments without Cookies

    Full text link
    Consider two brands that want to jointly test alternate web experiences for their customers with an A/B test. Such collaborative tests are today enabled using \textit{third-party cookies}, where each brand has information on the identity of visitors to another website. With the imminent elimination of third-party cookies, such A/B tests will become untenable. We propose a two-stage experimental design, where the two brands only need to agree on high-level aggregate parameters of the experiment to test the alternate experiences. Our design respects the privacy of customers. We propose an estimater of the Average Treatment Effect (ATE), show that it is unbiased and theoretically compute its variance. Our demonstration describes how a marketer for a brand can design such an experiment and analyze the results. On real and simulated data, we show that the approach provides valid estimate of the ATE with low variance and is robust to the proportion of visitors overlapping across the brands.Comment: Technical repor

    Discovering salient objects from videos using spatiotemporal salient region detection

    Get PDF
    Detecting salient objects from images and videos has many useful applications in computer vision. In this paper, a novel spatiotemporal salient region detection approach is proposed. The proposed approach computes spatiotemporal saliency by estimating spatial and temporal saliencies separately. The spatial saliency of an image is computed by estimating the color contrast cue and color distribution cue. The estimations of these cues exploit the patch level and region level image abstractions in a unified way. The aforementioned cues are fused to compute an initial spatial saliency map, which is further refined to emphasize saliencies of objects uniformly, and to suppress saliencies of background noises. The final spatial saliency map is computed by integrating the refined saliency map with center prior map. The temporal saliency is computed based on local and global temporal saliencies estimations using patch level optical flow abstractions. Both local and global temporal saliencies are fused to compute the temporal saliency. Finally, spatial and temporal saliencies are integrated to generate a spatiotemporal saliency map. The proposed temporal and spatiotemporal salient region detection approaches are extensively experimented on challenging salient object detection video datasets. The experimental results show that the proposed approaches achieve an improved performance than several state-of-the-art saliency detection approaches. In order to compensate different needs in respect of the speed/accuracy tradeoff, faster variants of the spatial, temporal and spatiotemporal salient region detection approaches are also presented in this paper

    Parametrizations of Inclusive Cross Sections for Pion Production in Proton-Proton Collisions

    Full text link
    Accurate knowledge of cross sections for pion production in proton-proton collisions finds wide application in particle physics, astrophysics, cosmic ray physics and space radiation problems, especially in situations where an incident proton is transported through some medium, and one requires knowledge of the output particle spectrum given the input spectrum. In such cases accurate parametrizations of the cross sections are desired. In this paper we review much of the experimental data and compare to a wide variety of different cross section parametrizations. In so doing, we provide parametrizations of neutral and charged pion cross sections which provide a very accurate description of the experimental data. Lorentz invariant differential cross sections, spectral distributions and total cross section parametrizations are presented.Comment: 32 pages with 15 figures. Published in Physical Review D62, 094030. File includes 6 tex files. The main file is paper.tex which has include statements refering to the rest. figures are in graphs.di

    Probabilistic linear function approximation for value-based reinforcement learning

    No full text
    Reinforcement learning (RL) is a computational framework for learning sequential decision strategies from the interaction of an agent with an unknown dynamic environment. This thesis focuses on value-based reinforcement learning methods, which rely on computing utility values for different behavior strategies that can be adopted by the agent. Real-world complex problems involve very large discrete or continuous state spaces where the use of approximate methods is required. It has been observed that subtle differences in the approximate methods result in very different theoretical properties and empirical behavior. In this thesis, we propose a new framework for discussing many popular function approximation methods, called Probabilistic Linear Function Approximation. This allows us to highlight the key differences of several approximation algorithms used in RL

    Oxygen mass transfer studies on batch cultivation of P. aeruginosa in a biocalorimeter

    Get PDF
    In the present work volumetric mass transfer coefficient (kLa) was investigated during batch cultivations of Pseudomonas aeruginosa on a nutrient media. The effects of process variables (viz. impeller speed, oxygen flow and geometry of impeller) on the volumetric mass transfer coefficient of oxygen, kLa, in a biocalorimeter (Bio-RC1) was investigated and reported in this research work. The experimental data have been analyzed employing MATLAB to obtain the influences of the process parameters on kLa. An attempt was made to correlate volumetric mass transfer coefficient with metabolic heat production rate at optimized process conditions. The correlation reported in this work would be useful to control and scale up of bioprocesses

    Next Generation of 100-μm-Pitch Wafer-Level Packaging and Assembly for Systems-on-Package

    Get PDF
    According to the latest ITRS roadmap, the pitch of area array packages is expected to decrease to 100 um by 2009. Simultaneously, the electrical performance of these interconnections needs to be improved to support data rates in excess of 10 Gbps, while guaranteeing thermomechanical reliability and lowering the cost. These requirements are challenging, thus, needing innovative interconnection designs and technologies. This paper describes the development of three interconnection schemes for wafer-level packages (WLPs) at 100-µm-pitch, involving rigid, compliant, and semicompliant interconnection technologies, extending the state of the art in each. Extensive electrical and mechanical modeling was carried out to optimize the geometry of the interconnections with respect to electrical performance and thermomechanical reliability. It was found that the requirements of electrical performance often conflict with those of thermomechanical reliability and the final “optimum” design is a tradeoff between the two. For the three interconnection schemes proposed, it was found that the electrical requirements can be met fairly well but acceptable mechanical reliability may require organic boards with coefficient of thermal expansion of 10 ppm/K or lower
    corecore