151 research outputs found

    DH Training in Spanish: Digital Humanities as an e-learning platform to teach between Spain and Latin America

    Get PDF
    #dariahTeach is developing open source, community-driven, source, high quality, multilingual teaching materials for the digital arts and humanities. Begun in January 2015 and running through June 2017, #dariahTeach is funded through an Erasmus + Strategic Partnership Grant. The #dariahTeach consortium has eight partners, coordinated by Maynooth University, Ireland. LINHD UNED is part of this initiative and is collaborating through the experience of Elena González Blanco and Gimena del Rio as experts in online distant teaching on Digital Humanities.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET

    ALBIRA: A small animal PET/SPECT/CT imaging system

    Full text link
    Purpose: The authors have developed a trimodal PET/SPECT/CT scanner for small animal imaging. The gamma ray subsystems are based on monolithic crystals coupled to multianode photomultiplier tubes (MA-PMTs), while computed tomography (CT) comprises a commercially available microfocus x-ray tube and a CsI scintillator 2D pixelated flat panel x-ray detector. In this study the authors will report on the design and performance evaluation of the multimodal system. Methods: X-ray transmission measurements are performed based on cone-beam geometry. Individual projections were acquired by rotating the x-ray tube and the 2D flat panel detector, thus making possible a transaxial field of view (FOV) of roughly 80 mm in diameter and an axial FOV of 65 mm for the CT system. The single photon emission computed tomography (SPECT) component has a dual head detector geometry mounted on a rotating gantry. The distance between the SPECT module detectors can be varied in order to optimize specific user requirements, including variable FOV. The positron emission tomography (PET) system is made up of eight compact modules forming an octagon with an axial FOV of 40 mm and a transaxial FOV of 80 mm in diameter. The main CT image quality parameters (spatial resolution and uniformity) have been determined. In the case of the SPECT, the tomographic spatial resolution and system sensitivity have been evaluated with a99mTc solution using single-pinhole and multi-pinhole collimators. PET and SPECT images were reconstructed using three-dimensional (3D) maximum likelihood and ordered subset expectation maximization (MLEM and OSEM) algorithms developed by the authors, whereas the CT images were obtained using a 3D based FBP algorithm. Results: CT spatial resolution was 85μm while a uniformity of 2.7% was obtained for a water filled phantom at 45 kV. The SPECT spatial resolution was better than 0.8 mm measured with a Derenzo-like phantom for a FOV of 20 mm using a 1-mm pinhole aperture collimator. The full width at half-maximum PET radial spatial resolution at the center of the field of view was 1.55 mm. The SPECT system sensitivity for a FOV of 20 mm and 15% energy window was 700 cps/MBq (7.8 × 10−2%) using a multi-pinhole equipped with five apertures 1 mm in diameter, whereas the PET absolute sensitivity was 2% for a 350–650 keV energy window and a 5 ns timing window. Several animal images are also presented. Conclusions: The new small animal PET/SPECT/CT proposed here exhibits high performance, producing high-quality images suitable for studies with small animals. Monolithic design for PET and SPECT scintillator crystals reduces cost and complexity without significant performance degradation.This study was supported by the Spanish Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica (I+D+I) under Grant No. FIS2010-21216-CO2-01 and Valencian Local Government under Grant PROMETEO 2008/114. The authors also thank Brennan Holt for checking and correcting the text.Sánchez Martínez, F.; Orero Palomares, A.; Soriano Asensi, A.; Correcher Salvador, C.; Conde Castellanos, PE.; González Martínez, AJ.; Hernández Hernández, L.... (2013). ALBIRA: A small animal PET/SPECT/CT imaging system. Medical Physics. 40(5):5190601-5190611. https://doi.org/10.1118/1.4800798S5190601519061140

    PET imaging of the autonomic myocardial function: methods and interpretation.

    Get PDF
    Cardiac positron emission tomography (PET) is mainly applied in myocardial perfusion and viability detection. Noninvasive imaging of myocardial innervation using PET is a valuable additional methodology in cardiac imaging. Novel methods and different PET ligands have been developed to measure presynaptic and postsynaptic function of the cardiac neuronal system. Obtained PET data can be analysed quantitatively or interpreted qualitatively. Thus far, PET is not a widely used clinical application in autonomic heart imaging; however, due to its technical advantages, the excellent properties of the imaging agents, and the availability of tools for quantification, it deserves a better position in the clinic. From a historical point of view, the focus of PET software packages for image analysis was mainly oncology and neurology driven. Actually, commercially available software for cardiac PET image analysis is still only available for the quantification of myocardial blood flow. Thus far, no commercial software package is available for the interpretation and quantification of PET innervation scans. However, image data quantification and analysis of kinetic data can be performed using adjusted generic tools. This paper gives an overview of different neuronal PET ligands, interpretation and quantification of acquired PET data

    ダイモンジソウ(ユキノシタ科)においてハビタット多様化がもたらす遺伝的および生理生態的影響

    Get PDF
    京都大学新制・課程博士博士(人間・環境学)甲第23993号人博第1045号新制||人||245(附属図書館)2022||人博||1045(吉田南総合図書館)京都大学大学院人間・環境学研究科相関環境学専攻(主査)教授 瀬戸口 浩彰, 教授 市岡 孝朗, 教授 宮下 英明, 准教授 西川 完途, 准教授 池田 啓学位規則第4条第1項該当Doctor of Human and Environmental StudiesKyoto UniversityDGA

    Development and characterization of EST-SSR markers for Saxifraga fortunei var. incisolobata (Saxifragaceae)

    Get PDF
    Premise: Saxifraga fortunei (Saxifragaceae) includes several infraspecific taxa that are ecologically and morphologically distinct. To investigate the evolutionary history of phenotypic polymorphisms in this species, we developed expressed sequence tag–simple sequence repeat (EST‐SSR) markers for S. fortunei. Methods and Results: We developed 26 polymorphic markers based on transcriptome data obtained from Illumina HiSeq 2000. Within three populations of S. fortunei var. incisolobata, the number of alleles ranged from four to 25, and the levels of observed and expected heterozygosity ranged from 0.200 to 0.847 and from 0.209 to 0.930, respectively. Furthermore, all 26 loci showed transferability for S. fortunei var. obtusocuneata and S. fortunei var. suwoensis, and 18 loci were also successfully amplified in S. acerifolia. Conclusions: These newly developed EST‐SSR markers will prove useful to infer the evolutionary history of S. fortunei var. incisolobata and its relatives in population genetic studies
    corecore