113 research outputs found

    Evaluation of Location-Specific Predictions by a Detailed Simulation Model of Aedes aegypti Populations

    Get PDF
    Skeeter Buster is a stochastic, spatially explicit simulation model of Aedes aegypti populations, designed to predict the outcome of vector population control methods. In this study, we apply the model to two specific locations, the cities of Iquitos, Peru, and Buenos Aires, Argentina. These two sites differ in the amount of field data that is available for location-specific customization. By comparing output from Skeeter Buster to field observations in these two cases we evaluate population dynamics predictions by Skeeter Buster with varying degrees of customization.Skeeter Buster was customized to the Iquitos location by simulating the layout of houses and the associated distribution of water-holding containers, based on extensive surveys of Ae. aegypti populations and larval habitats that have been conducted in Iquitos for over 10 years. The model is calibrated by adjusting the food input into various types of containers to match their observed pupal productivity in the field. We contrast the output of this customized model to the data collected from the natural population, comparing pupal numbers and spatial distribution of pupae in the population. Our results show that Skeeter Buster replicates specific population dynamics and spatial structure of Ae. aegypti in Iquitos. We then show how Skeeter Buster can be customized for Buenos Aires, where we only had Ae. aegypti abundance data that was averaged across all locations. In the Argentina case Skeeter Buster provides a satisfactory simulation of temporal population dynamics across seasons.This model can provide a faithful description of Ae. aegypti populations, through a process of location-specific customization that is contingent on the amount of data available from field collections. We discuss limitations presented by some specific components of the model such as the description of food dynamics and challenges that these limitations bring to model evaluation

    Unifying the spatial epidemiology and molecular evolution of emerging epidemics

    Get PDF
    We introduce a conceptual bridge between the previously unlinked fields of phylogenetics and mathematical spatial ecology, which enables the spatial parameters of an emerging epidemic to be directly estimated from sampled pathogen genome sequences. By using phylogenetic history to correct for spatial autocorrelation, we illustrate how a fundamental spatial variable, the diffusion coefficient, can be estimated using robust nonparametric statistics, and how heterogeneity in dispersal can be readily quantified. We apply this framework to the spread of the West Nile virus across North America, an important recent instance of spatial invasion by an emerging infectious disease. We demonstrate that the dispersal of West Nile virus is greater and far more variable than previously measured, such that its dissemination was critically determined by rare, long-range movements that are unlikely to be discerned during field observations. Our results indicate that, by ignoring this heterogeneity, previous models of the epidemic have substantially overestimated its basic reproductive number. More generally, our approach demonstrates that easily obtainable genetic data can be used to measure the spatial dynamics of natural populations that are otherwise difficult or costly to quantify

    Understanding Uncertainties in Model-Based Predictions of Aedes aegypti Population Dynamics

    Get PDF
    Dengue is one of the most important insect-vectored human viral diseases. The principal vector is Aedes aegypti, a mosquito that lives in close association with humans. Currently, there is no effective vaccine available and the only means for limiting dengue outbreaks is vector control. To help design vector control strategies, spatial models of Ae. aegypti population dynamics have been developed. However, the usefulness of such models depends on the reliability of their predictions, which can be affected by different sources of uncertainty including uncertainty in the model parameter estimation, uncertainty in the model structure, measurement errors in the data fed into the model, individual variability, and stochasticity in the environment. This study quantifies uncertainties in the mosquito population dynamics predicted by Skeeter Buster, a spatial model of Ae. aegypti, for the city of Iquitos, Peru. The uncertainty quantification should enable us to better understand the reliability of model predictions, improve Skeeter Buster and other similar models by targeting those parameters with high uncertainty contributions for further empirical research, and thereby decrease uncertainty in model predictions

    Stability Properties of Underdominance in Finite Subdivided Populations

    Get PDF
    In isolated populations underdominance leads to bistable evolutionary dynamics: below a certain mutant allele frequency the wildtype succeeds. Above this point, the potentially underdominant mutant allele fixes. In subdivided populations with gene flow there can be stable states with coexistence of wildtypes and mutants: polymorphism can be maintained because of a migration-selection equilibrium, i.e., selection against rare recent immigrant alleles that tend to be heterozygous. We focus on the stochastic evolutionary dynamics of systems where demographic fluctuations in the coupled populations are the main source of internal noise. We discuss the influence of fitness, migration rate, and the relative sizes of two interacting populations on the mean extinction times of a group of potentially underdominant mutant alleles. We classify realistic initial conditions according to their impact on the stochastic extinction process. Even in small populations, where demographic fluctuations are large, stability properties predicted from deterministic dynamics show remarkable robustness. Fixation of the mutant allele becomes unlikely but the time to its extinction can be long

    An assessment of orofacial clefts in Tanzania

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clefts of the lip (CL), the palate (CP), or both (CLP) are the most common orofacial congenital malformations found among live births, accounting for 65% of all head and neck anomalies. The frequency and pattern of orofacial clefts in different parts of the world and among different human groups varies widely. Generally, populations of Asian or Native American origin have the highest prevalence, while Caucasian populations show intermediate prevalence and African populations the lowest. To date, little is known regarding the epidemiology and pattern of orofacial clefts in Tanzania.</p> <p>Methods</p> <p>A retrospective descriptive study was conducted at Bugando Medical Centre to identify all children with orofacial clefts that attended or were treated during a period of five years. Cleft lip and/or palate records were obtained from patient files in the Hospital's Departments of Surgery, Paediatrics and medical records. Age at presentation, sex, region of origin, type and laterality of the cleft were recorded. In addition, presence of associated congenital anomalies or syndromes was recorded.</p> <p>Results</p> <p>A total of 240 orofacial cleft cases were seen during this period. Isolated cleft lip was the most common cleft type followed closely by cleft lip and palate (CLP). This is a departure from the pattern of clefting reported for Caucasian and Asian populations, where CLP or isolated cleft palate is the most common type. The distribution of clefts by side showed a statistically significant preponderance of the left side (43.7%) (χ<sup>2 </sup>= 92.4, p < 0.001), followed by the right (28.8%) and bilateral sides (18.3%). Patients with isolated cleft palate presented at very early age (mean age 1.00 years, SE 0.56). Associated congenital anomalies were observed in 2.8% of all patients with orofacial clefts, and included neural tube defects, Talipes and persistent ductus arteriosus.</p> <p>Conclusions</p> <p>Unilateral orofacial clefts were significantly more common than bilateral clefts; with the left side being the most common affected side. Most of the other findings did not show marked differences with orofacial cleft distributions in other African populations.</p

    Skeeter Buster: A Stochastic, Spatially Explicit Modeling Tool for Studying Aedes aegypti Population Replacement and Population Suppression Strategies

    Get PDF
    Dengue is a viral disease that affects approximately 50 million people annually, and is estimated to result in 12,500 fatalities. Dengue viruses are vectored by mosquitoes, predominantly by the species Aedes aegypti. Because there is currently no vaccine or specific treatment, the only available strategy to reduce dengue transmission is to control the populations of these mosquitoes. This can be achieved by traditional approaches such as insecticides, or by recently developed genetic methods that propose the release of mosquitoes genetically engineered to be unable to transmit dengue viruses. The expected outcome of different control strategies can be compared by simulating the population dynamics and genetics of mosquitoes at a given location. Development of optimal control strategies can then be guided by the modeling approach. To that end, we introduce a new modeling tool called Skeeter Buster. This model describes the dynamics and the genetics of Ae. aegypti populations at a very fine scale, simulating the contents of individual houses, and even the individual water-holding containers in which mosquito larvae reside. Skeeter Buster can be used to compare the predicted outcomes of multiple control strategies, traditional or genetic, making it an important tool in the fight against dengue

    Decelerating Spread of West Nile Virus by Percolation in a Heterogeneous Urban Landscape

    Get PDF
    Vector-borne diseases are emerging and re-emerging in urban environments throughout the world, presenting an increasing challenge to human health and a major obstacle to development. Currently, more than half of the global population is concentrated in urban environments, which are highly heterogeneous in the extent, degree, and distribution of environmental modifications. Because the prevalence of vector-borne pathogens is so closely coupled to the ecologies of vector and host species, this heterogeneity has the potential to significantly alter the dynamical systems through which pathogens propagate, and also thereby affect the epidemiological patterns of disease at multiple spatial scales. One such pattern is the speed of spread. Whereas standard models hold that pathogens spread as waves with constant or increasing speed, we hypothesized that heterogeneity in urban environments would cause decelerating travelling waves in incipient epidemics. To test this hypothesis, we analysed data on the spread of West Nile virus (WNV) in New York City (NYC), the 1999 epicentre of the North American pandemic, during annual epizootics from 2000–2008. These data show evidence of deceleration in all years studied, consistent with our hypothesis. To further explain these patterns, we developed a spatial model for vector-borne disease transmission in a heterogeneous environment. An emergent property of this model is that deceleration occurs only in the vicinity of a critical point. Geostatistical analysis suggests that NYC may be on the edge of this criticality. Together, these analyses provide the first evidence for the endogenous generation of decelerating travelling waves in an emerging infectious disease. Since the reported deceleration results from the heterogeneity of the environment through which the pathogen percolates, our findings suggest that targeting control at key sites could efficiently prevent pathogen spread to remote susceptible areas or even halt epidemics

    Modeling the Dynamic Transmission of Dengue Fever: Investigating Disease Persistence

    Get PDF
    Dengue is the most rapidly spreading mosquito-borne viral disease in the world and approximately 2.5 billion people live in dengue endemic countries. In Brazil it is mainly transmitted by Aedes aegypti mosquitoes. The wide clinical spectrum ranges from asymptomatic infections or mild illness, to the more severe forms of infection such as dengue hemorrhagic fever or dengue shock syndrome. The spread and dramatic increase in the occurrence of dengue cases in tropical and subtropical countries has been blamed on uncontrolled urbanization, population growth and international traveling. Vaccines are under development and the only current disease control strategy is trying to keep the vector quantity at the lowest possible levels. Mathematical models have been developed to help understand the disease's epidemiology. These models aim not only to predict epidemics but also to expand the capacity of phenomena explanation. We developed a spatially explicit model to simulate the dengue transmission in a densely populated area. The model involves the dynamic interactions between humans and mosquitoes and takes into account human mobility as an important factor of disease spread. We investigated the importance of human population size, human renewal rate, household infestation and ratio of vectors per person in the maintenance of sustained viral circulation

    Drivers of tropical forest loss between 2008 and 2019

    Get PDF
    During December 2020, a crowdsourcing campaign to understand what has been driving tropical forest loss during the past decade was undertaken. For 2 weeks, 58 participants from several countries reviewed almost 115 K unique locations in the tropics, identifying drivers of forest loss (derived from the Global Forest Watch map) between 2008 and 2019. Previous studies have produced global maps of drivers of forest loss, but the current campaign increased the resolution and the sample size across the tropics to provide a more accurate mapping of crucial factors leading to forest loss. The data were collected using the Geo-Wiki platform (www.geo-wiki.org) where the participants were asked to select the predominant and secondary forest loss drivers amongst a list of potential factors indicating evidence of visible human impact such as roads, trails, or buildings. The data described here are openly available and can be employed to produce updated maps of tropical drivers of forest loss, which in turn can be used to support policy makers in their decision-making and inform the public
    corecore