431 research outputs found
Prior test experience produces changes of t-patterns spatial distribution in the elevated plus maze test
Aim of present research was to investigate in male Wistar rats whether a prior elevated plus maze experience modifies the temporal structure of the behavioral response following a retest applied after 24h. Video files were coded by means of a software coder and event log files generated for each subject were analyzed by means of a specific software for temporal pattern analysis (Theme). Present research shows a clear reduction of the number of t-patterns from trial one to trial two. This reduction is provoked by the disappearance of t-patterns consisting of behavioral elements occurring in the unprotected zones of the maze. The results suggest that the previous experience in the maze causes learning-dependent behavioral changes inducing a more clear-cut response to
environmental anxiogenic conditions
A comprehensive MRI investigation to identify potential biomarkers of Osgood Schlatter disease in adolescents: a cross sectional study comparing Osgood Schlatter disease with controls
Background
Osgood–Schlatter disease (OSD) is the most common knee pain complaint among adolescents playing sports. Despite this, there remains controversy over the pathophysiology and whether specific anatomical characteristics are associated with OSD.
Purpose
This study aimed to systematically and comprehensively characterize adolescents with OSD using magnetic resonance imaging (MRI) compared to pain-free controls, including both tissue abnormalities that may be associated with OSD, as well as anatomical characteristics. A secondary objective was to identify potential imaging biomarkers associated with pain.
Study Design
Cross-sectional study.
Methods
Adolescents with OSD and controls were recruited from 2020 to 2022. Following a clinical exam, demographics, pain, sports participation, and Tanner stage were collected. Knee MRI was conducted on the participants' most symptomatic knee (OSD) or the dominant leg (controls).
Results
Sixty-seven adolescents (46 with OSD and 30 controls) were included. 80% of participants with OSD had at least one tissue alteration compared to 54% of controls. Compared to controls, OSD had 36.3 (95%CI 4.5 to 289.7) higher odds of bony oedema at the tibial tuberosity, and 32.7 (95%CI 4.1 to 260.6) and 5.3 (95%CI 0.6 to 46.2) higher odds of bony oedema at the tibial epiphysis and metaphysis respectively. Participants with OSD also had higher odds of fluid/oedema at the patellar tendon (12.3 95%CI 3.3 to 46.6), and superficial infrapatellar bursitis (7.2). Participants with OSD had a more proximal tendon attachment (mean tibial attachment portion difference, −0.05, 95% CI: −0.1 to 0.0, p = 0.02), tendon thickness (proximal mean difference, −0.09, 95% CI: −0.4 to 0.2, p = 0.04; distal mean difference, −0.6, 95% CI: −0.9 to −0.2, p = 0.01). Those with bony/tendon oedema had 1.8 points (95% CI: 0.3 to 3.2) higher pain on palpation than those without (t = −2.5, df = 26.6, p = 0.019), but there was no difference between these groups in a functional single leg pain provocation.
Conclusion
Adolescents with OSD present with tissue and structural abnormalities on MRI that differed from age-matched controls. The majority had findings in the patellar tendon and bone, which often co-occurred. However, a small proportion of OSD also presents without alterations. It appears these findings may be associated with clinical OSD-related pain on palpation of the tibial tuberosity.
Clinical Relevance
Our highlight the pathophysiology on imaging, which has implications for understanding the mechanism and treatment of OSD
Protein crystals in adenovirus type 5-infected cells: requirements for intranuclear crystallogenesis, structural and functional analysis
Intranuclear crystalline inclusions have been observed in the nucleus of epithelial cells infected with Adenovirus serotype 5 (Ad5) at late steps of the virus life cycle. Using immuno-electron microscopy and confocal microscopy of cells infected with various Ad5 recombinants modified in their penton base or fiber domains, we found that these inclusions represented crystals of penton capsomers, the heteromeric capsid protein formed of penton base and fiber subunits. The occurrence of protein crystals within the nucleus of infected cells required the integrity of the fiber knob and part of the shaft domain. In the knob domain, the region overlapping residues 489–492 in the FG loop was found to be essential for crystal formation. In the shaft, a large deletion of repeats 4 to 16 had no detrimental effect on crystal inclusions, whereas deletion of repeats 8 to 21 abolished crystal formation without altering the level of fiber protein expression. This suggested a crucial role of the five penultimate repeats in the crystallisation process. Chimeric pentons made of Ad5 penton base and fiber domains from different serotypes were analyzed with respect to crystal formation. No crystal was found when fiber consisted of shaft (S) from Ad5 and knob (K) from Ad3 (heterotypic S5-K3 fiber), but occurred with homotypic S3K3 fiber. However, less regular crystals were observed with homotypic S35-K35 fiber. TB5, a monoclonal antibody directed against the Ad5 fiber knob was found by immunofluorescence microscopy to react with high efficiency with the intranuclear protein crystals in situ. Data obtained with Ad fiber mutants indicated that the absence of crystalline inclusions correlated with a lower infectivity and/or lower yields of virus progeny, suggesting that the protein crystals might be involved in virion assembly. Thus, we propose that TB5 staining of Ad-infected 293 cells can be used as a prognostic assay for the viability and productivity of fiber-modified Ad5 vectors
Geo-mapping of caries risk in children and adolescents - a novel approach for allocation of preventive care
<p>Abstract</p> <p>Background</p> <p>Dental caries in children is unevenly distributed within populations with a higher burden in low socio-economy groups. Thus, tools are needed to allocate resources and establish evidence-based programs that meet the needs of those at risk. The aim of the study was to apply a novel concept for presenting epidemiological data based on caries risk in the region of Halland in southwest Sweden, using geo-maps.</p> <p>Methods</p> <p>The study population consisted of 46,536 individuals between 3-19 years of age (75% of the eligible population) from whom caries data were reported in 2010. Reported dmfs/DMFS>0 for an individual was considered as the primary caries outcome. Each study individual was geo-coded with respect to his/her residence parish. A parish-specific relative risk (RR) was calculated as the observed-to-expected ratio, where the expected number of individuals with dmfs/DMFS>0 was obtained from the age- and sex-specific caries (dmfs/DMFS>0) rates for the total study population. Smoothed caries risk geo-maps, along with corresponding statistical certainty geo-maps, were produced by using the free software Rapid Inquiry Facility and the ESRI<sup>® </sup>ArcGIS system.</p> <p>Results</p> <p>The geo-maps of preschool children (3-6 years), schoolchildren (7-11 years) and adolescents (12-19 years) displayed obvious geographical variations in caries risk, albeit most marked among the preschoolers. Among the preschool children the smoothed relative risk (SmRR) varied from 0.33 to 2.37 in different parishes. With increasing age, the contrasts seemed to diminish although the gross geographical risk pattern persisted also among the adolescents (SmRR range 0.75-1.20).</p> <p>Conclusion</p> <p>Geo-maps based on caries risk may provide a novel option to allocate resources and tailor supportive and preventive measures within regions with sections of the population with relatively high caries rates.</p
Oestrogen receptor α gene haplotype and postmenopausal breast cancer risk: a case control study
INTRODUCTION: Oestrogen receptor α, which mediates the effect of oestrogen in target tissues, is genetically polymorphic. Because breast cancer development is dependent on oestrogenic influence, we have investigated whether polymorphisms in the oestrogen receptor α gene (ESR1) are associated with breast cancer risk. METHODS: We genotyped breast cancer cases and age-matched population controls for one microsatellite marker and four single-nucleotide polymorphisms (SNPs) in ESR1. The numbers of genotyped cases and controls for each marker were as follows: TA(n), 1514 cases and 1514 controls; c.454-397C → T, 1557 cases and 1512 controls; c.454-351A → G, 1556 cases and 1512 controls; c.729C → T, 1562 cases and 1513 controls; c.975C → G, 1562 cases and 1513 controls. Using logistic regression models, we calculated odds ratios (ORs) and 95% confidence intervals (CIs). Haplotype effects were estimated in an exploratory analysis, using expectation-maximisation algorithms for case-control study data. RESULTS: There were no compelling associations between single polymorphic loci and breast cancer risk. In haplotype analyses, a common haplotype of the c.454-351A → G or c.454-397C → T and c.975C → G SNPs appeared to be associated with an increased risk for ductal breast cancer: one copy of the c.454-351A → G and c.975C → G haplotype entailed an OR of 1.19 (95% CI 1.06–1.33) and two copies with an OR of 1.42 (95% CI 1.15–1.77), compared with no copies, under a model of multiplicative penetrance. The association with the c.454-397C → T and c.975C → G haplotypes was similar. Our data indicated that these haplotypes were more influential in women with a high body mass index. Adjustment for multiple comparisons rendered the associations statistically non-significant. CONCLUSION: We found suggestions of an association between common haplotypes in ESR1 and the risk for ductal breast cancer that is stronger in heavy women
Space- and time-resolved investigation on diffusion kinetics of human skin following macromolecule delivery by microneedle arrays
Microscale medical devices are being developed for targeted skin delivery of vaccines and the extraction of biomarkers, with the potential to revolutionise healthcare in both developing and developed countries. The effective clinical development of these devices is dependent on understanding the macro-molecular diffusion properties of skin. We hypothesised that diffusion varied according to specific skin layers. Using three different molecular weights of rhodamine dextran (RD) (MW of 70, 500 and 2000 kDa) relevant to the vaccine and therapeutic scales, we deposited molecules to a range of depths (0–300 µm) in ex vivo human skin using the Nanopatch device. We observed significant dissipation of RD as diffusion with 70 and 500 kDa within the 30 min timeframe, which varied with MW and skin layer. Using multiphoton microscopy, image analysis and a Fick’s law analysis with 2D cartesian and axisymmetric cylindrical coordinates, we reported experimental trends of epidermal and dermal diffusivity values ranging from 1–8 µm2 s-1 to 1–20 µm2 s-1 respectively, with a significant decrease in the dermal-epidermal junction of 0.7–3 µm2 s-1. In breaching the stratum corneum (SC) and dermal-epidermal junction barriers, we have demonstrated practical application, delivery and targeting of macromolecules to both epidermal and dermal antigen presenting cells, providing a sound knowledge base for future development of skin-targeting clinical technologies in humans
Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways
OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels.
RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening.
RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c.
CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c
A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease
Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz
- …