1,445 research outputs found

    Investigating causal relations between sleep duration and risks of adverse pregnancy and perinatal outcomes:linear and nonlinear Mendelian randomization analyses

    Get PDF
    BACKGROUND: Observational studies have reported maternal short/long sleep duration to be associated with adverse pregnancy and perinatal outcomes. However, it remains unclear whether there are nonlinear causal effects. Our aim was to use Mendelian randomization (MR) and multivariable regression to examine nonlinear effects of sleep duration on stillbirth (MR only), miscarriage (MR only), gestational diabetes, hypertensive disorders of pregnancy, perinatal depression, preterm birth and low/high offspring birthweight. METHODS: We used data from European women in UK Biobank (N=176,897), FinnGen (N=~123,579), Avon Longitudinal Study of Parents and Children (N=6826), Born in Bradford (N=2940) and Norwegian Mother, Father and Child Cohort Study (MoBa, N=14,584). We used 78 previously identified genetic variants as instruments for sleep duration and investigated its effects using two-sample, and one-sample nonlinear (UK Biobank only), MR. We compared MR findings with multivariable regression in MoBa (N=76,669), where maternal sleep duration was measured at 30 weeks. RESULTS: In UK Biobank, MR provided evidence of nonlinear effects of sleep duration on stillbirth, perinatal depression and low offspring birthweight. Shorter and longer duration increased stillbirth and low offspring birthweight; shorter duration increased perinatal depression. For example, longer sleep duration was related to lower risk of low offspring birthweight (odds ratio 0.79 per 1 h/day (95% confidence interval: 0.67, 0.93)) in the shortest duration group and higher risk (odds ratio 1.40 (95% confidence interval: 1.06, 1.84)) in the longest duration group, suggesting shorter and longer duration increased the risk. These were supported by the lack of evidence of a linear effect of sleep duration on any outcome using two-sample MR. In multivariable regression, risks of all outcomes were higher in the women reporting <5 and ≥10 h/day sleep compared with the reference category of 8–9 h/day, despite some wide confidence intervals. Nonlinear models fitted the data better than linear models for most outcomes (likelihood ratio P-value=0.02 to 3.2×10(−52)), except for gestational diabetes. CONCLUSIONS: Our results show shorter and longer sleep duration potentially causing higher risks of stillbirth, perinatal depression and low offspring birthweight. Larger studies with more cases are needed to detect potential nonlinear effects on hypertensive disorders of pregnancy, preterm birth and high offspring birthweight. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12916-022-02494-y

    Associations between insomnia and pregnancy and perinatal outcomes: Evidence from Mendelian randomization and multivariable regression analyses

    Get PDF
    BACKGROUND: Insomnia is common and associated with adverse pregnancy and perinatal outcomes in observational studies. However, those associations could be vulnerable to residual confounding or reverse causality. Our aim was to estimate the association of insomnia with stillbirth, miscarriage, gestational diabetes (GD), hypertensive disorders of pregnancy (HDP), perinatal depression, preterm birth (PTB), and low/high offspring birthweight (LBW/HBW). METHODS AND FINDINGS: We used 2-sample mendelian randomization (MR) with 81 single-nucleotide polymorphisms (SNPs) instrumenting for a lifelong predisposition to insomnia. Our outcomes included ever experiencing stillbirth, ever experiencing miscarriage, GD, HDP, perinatal depression, PTB (gestational age 4,500 grams). We used data from women of European descent (N = 356,069, mean ages at delivery 25.5 to 30.0 years) from UK Biobank (UKB), FinnGen, Avon Longitudinal Study of Parents and Children (ALSPAC), Born in Bradford (BiB), and the Norwegian Mother, Father and Child Cohort (MoBa). Main MR analyses used inverse variance weighting (IVW), with weighted median and MR-Egger as sensitivity analyses. We compared MR estimates with multivariable regression of insomnia in pregnancy on outcomes in ALSPAC (N = 11,745). IVW showed evidence of an association of genetic susceptibility to insomnia with miscarriage (odds ratio (OR): 1.60, 95% confidence interval (CI): 1.18, 2.17, p = 0.002), perinatal depression (OR 3.56, 95% CI: 1.49, 8.54, p = 0.004), and LBW (OR 3.17, 95% CI: 1.69, 5.96, p < 0.001). IVW results did not support associations of insomnia with stillbirth, GD, HDP, PTB, and HBW, with wide CIs including the null. Associations of genetic susceptibility to insomnia with miscarriage, perinatal depression, and LBW were not observed in weighted median or MR-Egger analyses. Results from these sensitivity analyses were directionally consistent with IVW results for all outcomes, with the exception of GD, perinatal depression, and PTB in MR-Egger. Multivariable regression showed associations of insomnia at 18 weeks of gestation with perinatal depression (OR 2.96, 95% CI: 2.42, 3.63, p < 0.001), but not with LBW (OR 0.92, 95% CI: 0.69, 1.24, p = 0.60). Multivariable regression with miscarriage and stillbirth was not possible due to small numbers in index pregnancies. Key limitations are potential horizontal pleiotropy (particularly for perinatal depression) and low statistical power in MR, and residual confounding in multivariable regression. CONCLUSIONS: In this study, we observed some evidence in support of a possible causal relationship between genetically predicted insomnia and miscarriage, perinatal depression, and LBW. Our study also found observational evidence in support of an association between insomnia in pregnancy and perinatal depression, with no clear multivariable evidence of an association with LBW. Our findings highlight the importance of healthy sleep in women of reproductive age, though replication in larger studies, including with genetic instruments specific to insomnia in pregnancy are important

    Otimização da extração de ácidos nucleicos de material de punção aspirativa por agulha fina de tiroide obtido de lâminas coradas, tecidos fixados em formalina e emblocados em parafina e amostras de sangue estocadas por longo período

    Get PDF
    OBJECTIVE: Adequate isolation of nucleic acids from peripheral blood, fine-needle aspiration cells in stained slides, and fresh and formalin-fixed/paraffin-embedded tissues is crucial to ensure the success of molecular endocrinology techniques, especially when samples are stored for long periods, or when no other samples can be collected from patients who are lost to follow-up. Here, we evaluate several procedures to improve current methodologies for DNA (salting-out) and RNA isolation. MATERIALS AND METHODS: We used proteinase K treatment, heat shock, and other adaptations to increase the amount and quality of the material retrieved from the samples. RESULTS: We successfully isolated DNA and RNA from the samples described above, and this material was suitable for PCR, methylation profiling, real-time PCR and DNA sequencing. CONCLUSION: The techniques herein applied to isolate nucleic acids allowed further reliable molecular analyses. Arq Bras Endocrinol Metab. 2012;56(9):618-26OBJETIVO: O isolamento adequado de ácidos nucleicos a partir de sangue periférico, lâmina corada de punção aspirativa por agulha fina, tecido fixado em formalina e emblocado em parafina e tecido fresco é fundamental para assegurar o sucesso de técnicas aplicadas em endocrinologia molecular, principalmente quando lidamos com amostras estocadas por longos períodos ou quando há impossibilidade de nova coleta de amostra de pacientes que perderam o seguimento. Neste trabalho, objetivamos otimizar as metodologias clássicas para a extração de DNA (salting-out) e RNA. MATERIAIS E MÉTODOS: Utilizamos proteinase K, choque térmico, dentre outras modificações, com o objetivo de aumentar a quantidade e a qualidade do material recuperado a partir das amostras descritas acima. RESULTADOS: Isolamos com sucesso DNA e RNA de tais amostras e o material obtido foi adequado para a realização de PCR, perfil de metilação, PCR em tempo real e sequenciamento de DNA. CONCLUSÃO: As técnicas aplicadas neste estudo para isolar ácidos nucleicos permitiram a realização posterior de análises moleculares consistentes e confiáveis. Arq Bras Endocrinol Metab. 2012;56(9):618-26Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal de São Paulo (UNIFESP) Escola Paulista de MedicinaFaculdade de Medicina do ABC Department of Morphology and PhysiologyUNIFESP, EPMSciEL

    Canalopatias em endocrinologia: achados genéticos recentes e fisiopatologia

    Get PDF
    Ion channels serve diverse cellular functions, mainly in cell signal transduction. In endocrine cells, these channels play a major role in hormonal secretion, Ca2+-mediated cell signaling, transepithelial transport, cell motility and growth, volume regulation and cellular ionic content and acidification of lysosomal compartments. Ion channel dysfunction can cause endocrine disorders or endocrine-related manifestations, such as pseudohypoaldosteronism type 1, Liddle syndrome, Bartter syndrome, persistent hyperinsulinemic hypoglycemia of infancy, neonatal diabetes mellitus, cystic fibrosis, Dent's disease, hypomagnesemia with secondary hipocalcemia, nephrogenic diabetes insipidus and, the most recently genetically identified channelopathy, thyrotoxic hypokalemic periodic paralysis. This review briefly recapitulates the membrane action potential in endocrine cells and offers a short overview of known endocrine channelopathies with focus on recent progress regarding the pathophysiological mechanisms and functional genetic defects.Canais iônicos auxiliam diferentes funções celulares, principalmente na transdução de sinal. Nas células endócrinas, esses canais têm funções importantes na secreção hormonal, sinalização do Ca2+, transporte transepitelial, regulação da motilidade, volume e conteúdo iônico celular e da acidificação do compartimento lisossomal (pH). Como esperado, as alterações nos canais iônicos podem causar distúrbios endocrinológicos, como pseudo-hipoaldosteronismo tipo 1, síndrome de Liddle, síndrome de Bartter, hipoglicemia hiperinsulinêmica da infância, diabetes melito neonatal, fibrose cística, doença de Dent, hipomagnesemia com hipocalcemia secundária, diabetes insípido nefrogênico e paralisia periódica tirotóxica hipocalêmica. Este artigo propõe uma breve revisão das canalopatias endócrinas conhecidas, com foco particular nos recentes progressos no conhecimento dos mecanismos fisiopatológicos adquirido a partir das alterações funcionais encontradas.Universidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de MedicinaUNIFESP-EPM Departamento de BioquímicaUNIFESP, EPM, Depto. de MedicinaUNIFESP, EPM Depto. de BioquímicaSciEL

    An EPIC predictor of gestational age and its application to newborns conceived by assisted reproductive technologies

    Get PDF
    Background Gestational age is a useful proxy for assessing developmental maturity, but correct estimation of gestational age is difficult using clinical measures. DNA methylation at birth has proven to be an accurate predictor of gestational age. Previous predictors of epigenetic gestational age were based on DNA methylation data from the Illumina HumanMethylation 27 K or 450 K array, which have subsequently been replaced by the Illumina MethylationEPIC 850 K array (EPIC). Our aims here were to build an epigenetic gestational age clock specific for the EPIC array and to evaluate its precision and accuracy using the embryo transfer date of newborns from the largest EPIC-derived dataset to date on assisted reproductive technologies (ART). Methods We built an epigenetic gestational age clock using Lasso regression trained on 755 randomly selected non-ART newborns from the Norwegian Study of Assisted Reproductive Technologies (START)-a substudy of the Norwegian Mother, Father, and Child Cohort Study (MoBa). For the ART-conceived newborns, the START dataset had detailed information on the embryo transfer date and the specific ART procedure used for conception. The predicted gestational age was compared to clinically estimated gestational age in 200 non-ART and 838 ART newborns using MM-type robust regression. The performance of the clock was compared to previously published gestational age clocks in an independent replication sample of 148 newborns from the Prediction and Prevention of Preeclampsia and Intrauterine Growth Restrictions (PREDO) study-a prospective pregnancy cohort of Finnish women. Results Our new epigenetic gestational age clock showed higher precision and accuracy in predicting gestational age than previous gestational age clocks (R-2 = 0.724, median absolute deviation (MAD) = 3.14 days). Restricting the analysis to CpGs shared between 450 K and EPIC did not reduce the precision of the clock. Furthermore, validating the clock on ART newborns with known embryo transfer date confirmed that DNA methylation is an accurate predictor of gestational age (R-2 = 0.767, MAD = 3.7 days). Conclusions We present the first EPIC-based predictor of gestational age and demonstrate its robustness and precision in ART and non-ART newborns. As more datasets are being generated on the EPIC platform, this clock will be valuable in studies using gestational age to assess neonatal development.Peer reviewe
    corecore