15 research outputs found

    Acute alcohol effects on explicit and implicit motivation to drink alcohol in socially drinking adolescents

    Get PDF
    Alcohol-related cues can evoke explicit and implicit motivation to drink alcohol. Concerning the links between explicit and implicit motivation, there are mixed findings. Therefore, we investigated both concepts in 51 healthy 18- to 19-year-old males, who are less affected by neuropsychological deficits in decision-making that are attributed to previous alcohol exposure than older participants. In a randomized crossover design, adolescents were infused with either alcohol or placebo. Self-ratings of alcohol desire, thirst, well-being and alcohol effects comprised our explicit measures of motivation. To measure implicit motivation, we used money and drink stimuli in a Pavlovian conditioning (Pc) task and an Approach-Avoidance Task (AAT). Alcohol administration increased explicit motivation to drink alcohol, reduced Pc choices of alcoholic drink-conditioned stimuli, but had no effect on the AAT. This combination of results might be explained by differences between goal-directed and habitual behavior or a temporary reduction in rewarding outcome expectancies. Further, there was no association between our measures of motivation to drink alcohol, indicating that both self-reported motivation to drink and implicit approach tendencies may independently contribute to adolescents’ actual alcohol intake. Correlations between Alcohol Use Disorders Identification Test (AUDIT) scores and our measures of motivation to drink alcohol suggest that interventions should target high-risk adolescents after alcohol intake

    Widespread and Opponent fMRI Signals Represent Sound Location in Macaque Auditory Cortex

    No full text
    In primates, posterior auditory cortical areas are thought to be part of a dorsal auditory pathway that processes spatial information. But how posterior (and other) auditory areas represent acoustic space remains a matter of debate. Here we provide new evidence based on functional magnetic resonance imaging (fMRI) of the macaque indicating that space is predominantly represented by a distributed hemifield code rather than by a local spatial topography. Hemifield tuning in cortical and subcortical regions emerges from an opponent hemispheric pattern of activation and deactivation that depends on the availability of interaural delay cues. Importantly, these opponent signals allow responses in posterior regions to segregate space similarly to a hemifield code representation. Taken together, our results reconcile seemingly contradictory views by showing that the representation of space follows closely a hemifield code and suggest that enhanced posterior-dorsal spatial specificity in primates might emerge from this form of coding

    Discrimination Contours for Moving Sounds Reveal Duration and Distance Cues Dominate Auditory Speed Perception

    Get PDF
    Evidence that the auditory system contains specialised motion detectors is mixed. Many psychophysical studies confound speed cues with distance and duration cues and present sound sources that do not appear to move in external space. Here we use the ‘discrimination contours’ technique to probe the probabilistic combination of speed, distance and duration for stimuli moving in a horizontal arc around the listener in virtual auditory space. The technique produces a set of motion discrimination thresholds that define a contour in the distance-duration plane for different combination of the three cues, based on a 3-interval oddity task. The orientation of the contour (typically elliptical in shape) reveals which cue or combination of cues dominates. If the auditory system contains specialised motion detectors, stimuli moving over different distances and durations but defining the same speed should be more difficult to discriminate. The resulting discrimination contours should therefore be oriented obliquely along iso-speed lines within the distance-duration plane. However, we found that over a wide range of speeds, distances and durations, the ellipses aligned with distance-duration axes and were stretched vertically, suggesting that listeners were most sensitive to duration. A second experiment showed that listeners were able to make speed judgements when distance and duration cues were degraded by noise, but that performance was worse. Our results therefore suggest that speed is not a primary cue to motion in the auditory system, but that listeners are able to use speed to make discrimination judgements when distance and duration cues are unreliable

    Lateralization and Binaural Interaction of Middle-Latency and Late-Brainstem Components of the Auditory Evoked Response

    No full text
    We used magnetoencephalography to examine lateralization and binaural interaction of the middle-latency and late-brainstem components of the auditory evoked response (the MLR and SN10, respectively). Click stimuli were presented either monaurally, or binaurally with left- or right-leading interaural time differences (ITDs). While early MLR components, including the N19 and P30, were larger for monaural stimuli presented contralaterally (by approximately 30 and 36 % in the left and right hemispheres, respectively), later components, including the N40 and P50, were larger ipsilaterally. In contrast, MLRs elicited by binaural clicks with left- or right-leading ITDs did not differ. Depending on filter settings, weak binaural interaction could be observed as early as the P13 but was clearly much larger for later components, beginning at the P30, indicating some degree of binaural linearity up to early stages of cortical processing. The SN10, an obscure late-brainstem component, was observed consistently in individuals and showed linear binaural additivity. The results indicate that while the MLR is lateralized in response to monaural stimuli—and not ITDs—this lateralization reverses from primarily contralateral to primarily ipsilateral as early as 40 ms post stimulus and is never as large as that seen with fMRI
    corecore