717 research outputs found

    Three-Dimensional Porous Particles Composed of Curved, Two-Dimensional, Nano-Sized Layers for Li-Ion Batteries

    Get PDF
    Thin Si films coated on porous 3D particles composed of curved 2D graphene sheets have been synthesized utilizing techniques that allow for tunable properties. Since graphene exhibits specific surface area up to 100 times higher than carbon black or graphite, the deposition of the same mass of Si on graphene is much faster in comparison -- a factor which is important for practical applications. In addition, the distance between graphene layers is tunable and variation in the thickness of the deposited Si film is feasible. Both of these characteristics allow for optimization of the energy and power characteristics. Thicker films will allow higher capacity, but slower rate capabilities. Thinner films will allow more rapid charging, or higher power performance. In this innovation, uniform deposition of Si and C layers on high-surface area graphene produced granules with specific surface area (SSA) of 5 sq. m/g

    Silicon-based anode and method for manufacturing the same

    Get PDF
    A silicon-based anode comprising silicon, a carbon coating that coats the surface of the silicon, a polyvinyl acid that binds to at least a portion of the silicon, and vinylene carbonate that seals the interface between the silicon and the polyvinyl acid. Because of its properties, polyvinyl acid binders offer improved anode stability, tunable properties, and many other attractive attributes for silicon-based anodes, which enable the anode to withstand silicon cycles of expansion and contraction during charging and discharging

    Nano/Microâ Structured Si/C Anodes with High Initial Coulombic Efficiency in Liâ Ion Batteries

    Full text link
    One of the major challenges for designing highâ capacity anode materials is to combine both Coulombic efficiency and cycling stability. Herein, nano/microâ structured Si/C composites are designed and synthesized to address this challenge by decreasing the specific surface area and improving the tap density of Si/C materials. An ultrahigh initial Coulombic efficiency of 91.2â % could be achieved due to a proper particle size, low specific surface area, and optimized structure. The nano/microâ structured Si/C anodes exhibit excellent cycling stability with 96.5â % capacity retention after 100 cycles under a current density of 0.2â Aâ gâ 1.An ode to excellence: Nano/microâ structured Si/C materials were designed and synthesized on a large scale. The asâ obtained Si/C anodes exhibit excellent electrochemical properties in terms of specific capacity, Coulombic efficiency, and cycling stability.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137602/1/asia201600067-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137602/2/asia201600067.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137602/3/asia201600067_am.pd

    Hierarchical Hollow Spheres of Fe 2 O 3 @Polyaniline for Lithium Ion Battery Anodes

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/101856/1/adma201302710-sup-0001-S1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/101856/2/adma201302710.pd

    Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries

    Get PDF
    One of the most exciting areas in lithium ion batteries is engineering structured silicon anodes. These new materials promise to lead the next generation of batteries with significantly higher reversible charge capacity than current technologies. One drawback of these materials is that their production involves costly processing steps, limiting their application in commercial lithium ion batteries. In this report we present an inexpensive method for synthesizing macroporous silicon particulates (MPSPs). After being mixed with polyacrylonitrile (PAN) and pyrolyzed, MPSPs can alloy with lithium, resulting in capacities of 1000 mAhg−1 for over 600+ cycles. These sponge-like MPSPs with pyrolyzed PAN (PPAN) can accommodate the large volume expansion associated with silicon lithiation. This performance combined with low cost processing yields a competitive anode material that will have an immediate and direct application in lithium ion batteries

    High-performance silicon-based multicomponent battery anodes produced via synergistic coupling of multifunctional coating layers

    Get PDF
    Nanostructured Si-based materials are key building blocks for next-generation energy storage devices. To meet the requirements of practical energy storage devices, Si-based materials should exhibit high-power, low volume change, and high tap density. So far, there have been no reliable materials reported satisfying all of these requirements. Here, we report a novel Si-based multicomponent design, in which the Si core is covered with multifunctional shell layers. The synergistic coupling of Si with the multifunctional shell provides vital clues for satisfying all Si anode requirements for practical batteries. The Si-based multicomponent anode delivers a high capacity of similar to 1000 mA h g(-1), a highly stable cycling retention (similar to 65% after 1000 cycles at 1 C), an excellent rate capability (similar to 800 mA h g(-1) at 10 C), and a remarkably suppressed volume expansion (12% after 100 cycles). Our synthetic process is simple, low-cost, and safe, facilitating new methods for developing electrode materials for practical energy storage.open0

    High capacity silicon anodes enabled by MXene viscous aqueous ink

    Get PDF
    The ever-increasing demands for advanced lithium-ion batteries have greatly stimulated the quest for robust electrodes with a high areal capacity. Producing thick electrodes from a high-performance active material would maximize this parameter. However, above a critical thickness, solution-processed films typically encounter electrical/mechanical problems, limiting the achievable areal capacity and rate performance as a result. Herein, we show that two-dimensional titanium carbide or carbonitride nanosheets, known as MXenes, can be used as a conductive binder for silicon electrodes produced by a simple and scalable slurry-casting technique without the need of any other additives. The nanosheets form a continuous metallic network, enable fast charge transport and provide good mechanical reinforcement for the thick electrode (up to 450 µm). Consequently, very high areal capacity anodes (up to 23.3 mAh cm−2) have been demonstrated

    Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents

    Get PDF
    Rapid progress has been made in realizing battery electrode materials with high capacity and long-term cyclability in the past decade. However, low first-cycle Coulombic efficiency as a result of the formation of a solid electrolyte interphase and Li trapping at the anodes, remains unresolved. Here we report LixSi-Li2O core-shell nanoparticles as an excellent prelithiation reagent with high specific capacity to compensate the first-cycle capacity loss. These nanoparticles are produced via a one-step thermal alloying process. LixSi-Li2O core-shell nanoparticles are processible in a slurry and exhibit high capacity under dry-air conditions with the protection of a Li2O passivation shell, indicating that these nanoparticles are potentially compatible with industrial battery fabrication processes. Both Si and graphite anodes are successfully prelithiated with these nanoparticles to achieve high first-cycle Coulombic efficiencies of 94% to 4100%. The LixSi-Li2O core-shell nanoparticles enable the practical implementation of high-performance electrode materials in lithium-ion batteries.open6

    Infinitesimal sulfur fusion yields quasi-metallic bulk silicon for stable and fast energy storage

    Get PDF
    A fast-charging battery that supplies maximum energy is a key element for vehicle electrification. High-capacity silicon anodes offer a viable alternative to carbonaceous materials, but they are vulnerable to fracture due to large volumetric changes during charge???discharge cycles. The low ionic and electronic transport across the silicon particles limits the charging rate of batteries. Here, as a three-in-one solution for the above issues, we show that small amounts of sulfur doping (<1 at%) render quasi-metallic silicon microparticles by substitutional doping and increase lithium ion conductivity through the flexible and robust self-supporting channels as demonstrated by microscopy observation and theoretical calculations. Such unusual doping characters are enabled by the simultaneous bottom-up assembly of dopants and silicon at the seed level in molten salts medium. This sulfur-doped silicon anode shows highly stable battery cycling at a fast-charging rate with a high energy density beyond those of a commercial standard anode
    corecore