19 research outputs found

    Co-immobilization of Palm and DNase I for the development of an effective anti-infective coating for catheter surfaces

    Get PDF
    Biomaterial-associated infections, in particular, catheter-associated infections (CAI) are a major problem in clinical practice due to their ability to resist antimicrobial treatment and the host immune system. This study aimed to co-immobilize the antimicrobial lipopeptide Palm and the enzyme DNase I to introduce both antimicrobial and anti-adhesive functionalities to polydimethylsiloxane (PDMS) material, using dopamine chemistry. Surface characterization confirmed the immobilization of both compounds and no leaching of Palm from the surfaces for up to 5 days. Co-immobilization of both agents resulted in a bifunctional coating with excellent surface antimicrobial and anti-biofilm properties against both Staphylococcus aureus and Pseudomonas aeruginosa. The modified surfaces demonstrated superior biocompatibility. To better discriminate co-adhesion of both species on modified surfaces, PNA FISH (Fluorescence in situ hybridization using peptide nucleic acid probes) was employed, and results showed that P. aeruginosa was the dominant organism, with S. aureus adhering afterwards on P. aeruginosa agglomerates. Furthermore, Palm immobilization exhibited no propensity to develop bacterial resistance, as opposite to the immobilization of an antibiotic. The overall results highlighted that co-immobilization of Palm and DNase I holds great potential to be applied in the development of catheters.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI- 01-0145-FEDER-006684). The authors also acknowledge the support by FCT and the European Community fund FEDER, through Program COMPETE, under the scope of the Projects AntiPep PTDC/SAU-SAP/113196/2009 (FCOMP-01-0124-FEDER-016012) and RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and the PhD Grant of Diana Alves (SFRH/BD/78063/2011). This study was also supported by the statutory fund from the Medical University of Gdansk (Project No. 02-0087/07/508)

    The cystic fibrosis microbiome in an ecological perspective and its impact in antibiotic therapy

    Get PDF
    The recent focus on the cystic fibrosis (CF) complex microbiome has led to the recognition that the microbes can interact between them and with the host immune system, affecting the disease progression and treatment routes. Although the main focus remains on the interactions between traditional pathogens, growing evidence supports the contribution and the role of emergent species. Understanding the mechanisms and the biological effects involved in polymicrobial interactions may be the key to improve effective therapies and also to define new strategies for disease control. This review focuses on the interactions between microbe-microbe and host-microbe, from an ecological point of view, discussing their impact on CF disease progression. There are increasing indications that these interactions impact the success of antimicrobial therapy. Consequently, a new approach where therapy is personalized to patients by taking into account their individual CF microbiome is suggested.Portuguese Foundation for Science and Technology (FCT), the strategic funding of UID/BIO/04469/2013-CEB and UID/EQU/00511/2013-LEPABE units. This study was also supported by FCT and the European Community fund FEDER, through Program COMPETE, under the scope of the Projects “DNA mimics” PIC/IC/82815/2007, RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462), “BioHealth—Biotechnology and Bioengineering approaches to improve health quality”, Ref. NORTE-07-0124-FEDER-000027 and NORTE-07-0124-FEDER-000025—RL2_ Environment and Health, co-funded by the Programa Operacional Regional do Norte (ON.2 – O Novo Norte), QREN, FEDER. The authors also acknowledge the grant of Susana P. Lopes (SFRH/BPD/95616/2013) and of the COST-Action TD1004: Theragnostics for imaging and therapy

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Using Graphene-Based Materials for Stiff and Strong Poly(ethylene glycol) Hydrogels

    No full text
    Blood-contacting devices are increasingly important for the management of cardiovascular diseases. Poly(ethylene glycol) (PEG) hydrogels represent one of the most explored hydrogels to date. However, they are mechanically weak, which prevents their use in load-bearing biomedical applications (e.g., vascular grafts, cardiac valves). Graphene and its derivatives, which have outstanding mechanical properties, a very high specific surface area, and good compatibility with many polymer matrices, are promising candidates to solve this challenge. In this work, we propose the use of graphene-based materials as nanofillers for mechanical reinforcement of PEG hydrogels, and we obtain composites that are stiffer and stronger than, and as anti-adhesive as, neat PEG hydrogels. Results show that single-layer and few-layer graphene oxide can strengthen PEG hydrogels, increasing their stiffness up to 6-fold and their strength 14-fold upon incorporation of 4% w/v (40 mg/mL) graphene oxide. The composites are cytocompatible and remain anti-adhesive towards endothelial cells, human platelets and Staphylococcus aureus, similar to neat hydrogels. To the best of our knowledge, this is the first work to report such an increase of the tensile properties of PEG hydrogels using graphene-based materials as fillers. This work paves the way for the exploitation of PEG hydrogels as a backbone material for load-bearing applications

    Antimicrobial graphene nanoplatelets coatings for silicone catheters

    No full text
    Silicone rubber (SR) peritoneal dialysis (PD) catheters are prone to bacterial adhesion and biofilm formation, which contributes to development of infection and associated morbidity in PD patients. We herein evaluate whether surface immobilization of graphene nanoplatelets (GNP) provides antimicrobial properties to SR. Dip and spray coating were used to deposit a dispersion containing SR and GNP-M5 or its oxidized form (GNP-M5ox) on the surface of silicone. The antimicrobial effect of GNP exposure and oxidation towards Staphylococcus epidermidis was assessed. GNP was successfully exposed on the surface, and while dipping provided better adhesion of either GNP, spraying resulted in uniform and higher surface coverage. Spraying led to enhanced bacterial adhesion comparing to dip coated and uncoated SR, which are similar. However, independently of the technique, GNP-M5ox coatings induced higher bacterial death. As such, SR/GNP-M5ox coating performed by dipping revealed to be the most promising approach, preserving bacterial adhesion levels of silicone while increasing bacterial death to around 80%. For the first time, graphene-based materials antimicrobial activity was evaluated by quantification of bacterial adhesion and viability. The high antibacterial effect, associated with a stable and cytocompatible coating which does not delaminate from SR surface, demonstrates its potential use in silicone biomedical industry. (c) 2018 Elsevier Lt

    Subthalamic stimulation has acute psychotropic effects and improves neuropsychiatric fluctuations in Parkinson's disease

    Get PDF
    Background: Subthalamic nucleus deep brain stimulation (STN-DBS) is a well-established treatment for motor complications in Parkinson's disease (PD). However, its effects on neuropsychiatric symptoms remain disputed. The aim of this study was to evaluate the effects of STN-DBS on neuropsychiatric symptoms in PD. Methods: We retrospectively assessed 26 patients with PD who underwent a preoperative levodopa challenge and postoperative levodopa and stimulation challenges 1 year after STN-DBS. Based on the Neuropsychiatric Fluctuations Scale, Neuropsychiatric State Scores and Neuropsychiatric Fluctuation Indices (NFIs) were calculated. Mixed-effects models with random effects for intercept were used to examine the association of Neuropsychiatric State Score and NFI with the different assessment conditions. Results: In acute challenge conditions, there was an estimated increase of 15.9 points in the Neuropsychiatric State Score in stimulation ON conditions (95% CI 11.4 to 20.6, p<0.001) and 7.6 points in medication ON conditions (95% CI 3.3 to 11.9, p<0.001). Neuropsychiatric fluctuations induced by levodopa, quantified with NFI, decreased by 35.54% (95% CI 49.3 to 21.8, p<0.001) 1 year after STN-DBS. Conclusions: Bilateral STN-DBS at therapeutic parameters has acute psychotropic effects similar to levodopa and can modulate and decrease levodopa-induced neuropsychiatric fluctuations.S

    An integrated genomic approach to dissect the genetic landscape regulating the cell-to-cell transfer of α-synuclein

    Full text link
    Neuropathological and experimental evidence suggests that the cell-to-cell transfer of α-synuclein has an important role in the pathogenesis of Parkinson’s disease (PD). However, the mechanism underlying this phenomenon is not fully understood. We undertook a small interfering RNA (siRNA), genome-wide screen to identify genes regulating the cell-to-cell transfer of α-synuclein. A genetically encoded reporter, GFP-2A-αSynuclein-RFP, suitable for separating donor and recipient cells, was transiently transfected into HEK cells stably overexpressing α-synuclein. We find that 38 genes regulate the transfer of α-synuclein-RFP, one of which is ITGA8, a candidate gene identified through a recent PD genome-wide association study (GWAS). Weighted gene co-expression network analysis (WGCNA) and weighted protein-protein network interaction analysis (WPPNIA) show that those hits cluster in networks that include known PD genes more frequently than expected by random chance. The findings expand our understanding of the mechanism of α-synuclein spread
    corecore